


Model organisms continue to be fundamental to almost 

every aspect of genetic research. Three articles in this 

month’s issue highlight the breadth of areas in which 

animal models provide insights, but also emphasize the 

need to use these organisms in the most effective way.

The Review from Lessing and Bonini on page 359 illustrates how one 

classic genetic model can be used to shed light on pathways that are 

relevant to disease. The wide range of genetic tools that can be used in 

Drosophila melanogaster has allowed the identification of many genes that 

are required to maintain neuronal integrity — over half of which have mouse 

or human counterparts that lead to neurodegeneration when disrupted.

Despite the advantages of flies and other non-mammalian organisms, 

the mouse remains the leading genetic model for disease. In a Review 

on page 371, Beckers and colleagues discuss three key areas in which 

the use of mouse models needs to be improved for maximum utility in 

both disease and basic research. They stress the need for genotypes 

more similar to those in human populations, more comprehensive and 

coordinated phenotyping and — the biggest challenge —  methods to 

analyse environmental effects.

The choice of model organisms for evo–devo research is the topic of the 

Opinion article by Sommer on page 416. The author argues that focusing 

on a few key models with extensively developed genetic toolkits would be 

beneficial for tackling several aspects of this field, rather than studying a 

wider range of organisms in less detail.

The issue also features the first of two interviews with the recipients of 

this year’s March of Dimes Prize in Developmental Biology (page 351). 

The second interview will appear in our July issue.
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As the birthplace of modern 
humans, Africa holds unique 
significance for human population 
genetics. The continent is now home 
to approximately 900 million  
people in more than 2,000 different  
ethnolinguistic groups, and yet  
patterns of genetic variation in 
African populations have remained 
largely uncharacterized. A major 
study of genetic diversity in African 
and African American populations 
now helps to unravel the complex 
evolutionary history of these  
groups and human populations 
worldwide, and might lead to 
improvements in understanding 
population-specific disease risk.

Tishkoff and colleagues analysed 
variation in a panel of over 1,300 
microsatellites and insertions–
deletions in 121 African, 4 African 
American and 60 non-African popu-
lations. This work has increased the 
scale of genetic analysis of African 
populations to include a much wider 
range of groups in a genome-wide 
study than has previously been done. 
This gave the authors sufficient 
data to explore patterns of genetic 
diversity both within and between 
populations, to construct phylo-
genetic trees to look at the genetic 
distances between populations 
(which could be compared with the 
geographic distances), and to explore 

the relationship between genetic and 
cultural distinctions in greater detail 
than before.

African and African American 
populations stand out in the world-
wide comparisons as having the 
highest levels of within- and between-
population diversity. This is consistent 
with divergent ancestral populations 
in Africa, compared with much 
smaller founder groups that were 
formed as humans migrated away 
from the continent. Indeed, diversity 
within populations generally decreases 
with increased distance from Africa. 
The authors found genetic evidence 
of 14 ancestral population clusters. 
Importantly, these analyses revealed 
more substructure within African 
populations than had previously been 
observed, which has implications for 
the appropriate design and interpreta-
tion of association studies for diseases 
and other traits.

 The authors also used their genetic 
data to explore the population history 
of many ethnolinguistic groups, giving 
further insight into where migrations 
have occurred and which populations 
have remained relatively isolated. 
For example, considerable Niger-
Kordofanian ancestry was found  
in nearly all populations, which  
probably reflects the spread and 
mixing with local populations of the 
farming Bantu-speaking group in  

the last ~5,000 years. Interestingly, 
although genetic clusters are 
generally consistent with 
language groups there 
are some exceptions — 
such as the Maasai and 
Pygmies — for which 
cultural distinction has 
been robust despite 
genetic mixing. 

A central theme 
that emerges from 
these analyses is the 
genetic complexity of 
African populations. 
The significance of this 
is twofold: it confirms 
that further genotyping 
and resequencing of 
African genomes is likely 
to be highly informative 
for dissecting the history 
of human evolution; and, 
importantly for current and future 
inhabitants of Africa, it emphasizes 
that ethnically diverse populations 
need to be included in studies of 
disease risk and drug response.

Mary Muers

ORIGINAL PAPER Tishkoff, S. A. et al.  
The genetic struture and history of Africans and 
African Americans. Science 30 Apr 2009 
(doi:10.1126/science.1172257)
fuRthER REAdING Pagel, M. Human language 
as a culturally transmitted replicator. Nature Rev. 
Genet. 12 May 2009 (doi:10.1038/nrg2560)
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The domestic cow, 
Bos taurus, is not only 
an established part of 

human agriculture but with 
its interesting position in the 
phylogenetic tree — in a differ-

ent clade to humans and rodents 
— it is also favoured in comparative 
genomics. Two assemblies of the 
cow genome now provide a valu-
able resource for both evolutionary 
genomics and livestock breeding, 
and analyses of the data (including 
a Bovine Thematic Series of com-
panion papers) are already providing 
insights into the evolution of milk 
production and the genomic impact 
of domestication and breeding.

The sequence data have been 
made available by the Bovine 
Genome Sequencing and Analysis 
Consortium, who have published an 
analysis of their genome assembly. In 
a simultaneous publication, Zimin 
et al. have published an alterna-
tive assembly using the primary 
sequence data. Both assemblies 
represent ~90% of the full genome 
sequence but differ, for example, 
in the number of segmental 
duplications. 

The authors of the consortium 
paper estimate that the cattle 
genome contains at least 22,000 
protein-coding genes, with over 
16,000 having orthologues in other 
placental mammals. One interesting 

finding from this assembly is that 
genes associated with reproduction 
are overrepresented in segmental 
duplications, which might have con-
tributed to ruminant-specific aspects 
of maternal adaptation and fetal 
growth. They also found extensive 
duplication and divergence of innate 
immune system genes, which might 
reflect either the high exposure to 
microorganisms that occurs in the 
cow rumen or selection owing to the 
rapid transmission of disease that can 
occur within herds.

Given the importance of dairy 
farming, it is unsurprising that the 
availability of the bovine genome has 
already triggered new research into 
the genetics of milk production and 
lactation. For example, Lemay and 
colleagues compared the cow genome 
with other mammalian genomes and 
identified 197 unique milk protein 
genes in cattle, but found that, on 
average, genes involved in lactation 
are highly conserved among mam-
mals and evolve slowly. Copy number 
variation seems to have made a sig-
nificant contribution to the diversity 
of milk composition between species. 
This comprehensive catalogue of 
bovine milk genes might also help in 
the search for candidate genes within 
milk-trait QTLs — a significant step 
for enhancing yield.

In a companion paper to the 
genome assembly, the Bovine 

HapMap Consortium analyse SNP 
variation in different cattle popula-
tions, including from the humpless 
(taurine) breeds and the humped 
(indicine) breeds. Their studies of 
genetic diversity reveal that, overall, 
domestic cattle had a large ancestral 
population, so the population bot-
tlenecks that are commonly associ-
ated with domestication and breed 
formation were not as severe in cattle 
as they are in species such as the dog. 
However, indicine breeds had a much 
larger ancestral population than 
taurine cattle (which have a similar 
level of SNP diversity to humans). 
Significantly, for cattle breeders, there 
has been a very recent rapid decline 
in genetic diversity, which is probably 
due to selection.

These studies suggest that the 
cow will provide new perspectives 
on mammalian genome evolution, 
as well as revealing the genetic 
impact of past and future prospects 
for cattle breeding.

Mary Muers

ORIGINAL RESEARCH PAPERS The Bovine 
Genome Sequencing and Analysis Consortium  
et al. The genome sequence of taurine cattle:  
a window to ruminant biology and evolution. 
Science 324, 522–528 (2009) | Zimin, A. V. et al.  
A whole-genome assembly of the domestic cow, 
Bos taurus. Genome Biol. 24 Apr 2009 
(doi:10.1186/gb-2009-10-4-r42)  | Lemay, D. G. et al. 
The bovine lactation genome: insights into the 
evolution of mammalian milk. Genome Biol.  
24 Apr 2009 (doi:10.1186/gb-2009-10-4-r43) | 
The Bovine HapMap Consortium. Genome-wide 
survey of SNP variation uncovers genetic 
structure of cattle breeds. Science 324, 528–532 
(2009)
WEBSItE
BioMed Central Bovine Thematic Series:  
http://www.biomedcentral.com/series/bovine
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Our understanding of the genetic 
contribution to autism spectrum 
disorders (ASDs) has expanded 
rapidly, but remains far from com-
plete. Despite good evidence for 
roles of rare and de novo variants in 
some cases, the genetic basis of most 
cases remains unexplained and the 
involvement of common genetic 
variants is poorly understood. Two 
genome-wide studies now alter this 
picture. One provides the first firm 
evidence for a role of common SNPs 
in ASDs, whereas the other expands 
our knowledge of the involvement of 
copy number variation.

Wang and colleagues carried 
out genome-wide studies using 

two large cohorts, one comprising 
ASD families and the other popula-
tion based. To define the cohorts, 
stringent diagnostic criteria were 
used — an important step given 
the clinical heterogeneity of these 
conditions. The authors tested for 
association with more than 550,000 
SNPs and achieved reliable results 
for 780 families as well as 1,204 
cases and 6,491 controls. Six SNPs 
showed association at genome-wide 
significance across the two cohorts. 
The SNPs — which were replicated 
in a third cohort — lie between two 
genes that encode the cell adhesion 
molecules cadherin 9 (CDH9) and 
cadherin 10 (CDH10). This is an 
interesting finding given that altered 
neuronal cell adhesion has been 
implicated in ASDs; furthermore, 
CDH10 is expressed in the frontal 
cortex, an area that is known to be 
affected in ASD cases.

 ‘Pathway-based’ approaches 
— which combine data from SNPs 
to look for differences in statisti-
cal significance between certain 
groups of genes and the rest of the 
genome — highlighted a group of 25 
cadherin genes and 8 neurexin genes, 
providing further evidence for a role 
of altered neuronal cell adhesion 
in ASDs.

In a second study, Glessner and 
colleagues looked for copy number 
variants (CNVs) that are involved 
in ASD susceptibility. Again, strict 

diagnostic assessments were made 
and large numbers of cases and con-
trols were used — 1,246 and 1,409, 
respectively. Using the same geno-
typing platform as Wang et al., the 
authors made a total of 78,490 CNV 
calls. The results provided additional 
support for the involvement of some 
CNVs that have already been impli-
cated in ASDs and implicate nine 
new variants. The genes that are asso-
ciated with these CNVs again suggest 
the importance of neuronal cell adhe-
sion in ASD, and also highlight a role 
for the ubiquitin pathway — another 
function that has been implicated in 
previous genetic studies of ASDs.

As well as adding to our under-
standing of the genetic architecture 
of ASD susceptibility by implicating 
common variants, these studies pro-
vide clues to the biological functions 
affected in these conditions. Studying 
the expression patterns and func-
tions of these genes will be a crucial 
next step.

Louisa Flintoft

ORIGINAL RESEARCH PAPERS Wang, K. et al. 
Common genetic variants on 5p14.1 associate 
with autism spectrum disorders. Nature  
28 Apr 2009 (doi:10.1038/nature07999) | 
Glessner, J. T. et al. Autism genome-wide copy 
number variation reveals ubiquitin and neuronal 
genes. Nature 28 Apr 2009 (doi: 10.1038/
nature07953)
FURTHER READING Abrahams, B. S. & 
Geschwind, D. H. Advances in autism genetics: 
on the threshold of a new neurobiology. Nature 
Rev. Genet. 9, 341–355 (2008)
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 g e n o m e  i n s ta b i l i t y

Chromosome instability is common in human 
cleavage-stage embryos
Vanneste, E. et al. Nature Med. 26 Apr 2009 (doi:10.1038/nm.1924)

This study describes the presence of a large amount of genomic 
instability early in human embryogenesis. The authors used 
new array-based methods to analyze genome-wide changes 
in copy number and loss of heterozygosity in multiple single 
cells of in vitro fertilization embryos taken from fertile women. 
Only 2 of the 23 cleavage stage embryos were chromosomally 
normal; the others were mosaic for deletions, duplications, 
amplifications and aneuploidies. These frequent and complex 
rearrangements might account for the low fertility rate in 
humans, or for the high rate of miscarriage.

 e P i g e n e t i C s

A C. elegans LSD1 demethylase contributes to germline 
immortality by reprogramming epigenetic memory
Katz, D. J. et al. Cell 137, 308–320 (2009)

Some histone modifications, such as dimethylation of histone H3 
at lysine 4 (H3K4me2), are thought to help cells to ‘remember’ 
patterns of transcription, and they are erased in the germ 
line to allow normal development. These authors found that 
mutation of spr-5, which encodes the Caenorhabditis elegans 
orthologue of LSD1 and removes H3K4me2, leads to increasing 
sterility across subsequent generations. Sterility correlates 
with increased H3K4me2 and with aberrant expression of 
spermatogenesis genes. This work provides insight into potential 
mechanisms of epigenetic memory and reprogramming.

 R e P l i C at i o n

Transcription initiation activity sets replication origin 
efficiency in mammalian cells
Sequeria-Mendes, J. et al. PLoS Genet. 5, e1000446 (2009)

This study shows that DNA replication initiates preferentially 
at sites of active transcription in mouse embryonic stem 
cells, and that nearly half of all replication origins (ORIs) are 
at promoters. ORIs at promoters in CpG islands are the most 
efficient at initiating replication. The association between ORIs 
and transcriptional units is maintained in other cell types and 
is in agreement with earlier work in human cells. These findings 
provide further evidence of an intimate relationship between 
transcription and replication, and could reflect co-evolution of 
their regulatory regions.

 g e n e  e X P R e s s i o n

Upstream open reading frames cause widespread 
reduction of protein expression and are polymorphic 
among humans
Calvo, S. et al. Proc. Natl Acad. Sci. USA 13 Apr 2009 (doi: 10.1073/
pnas.0810916106)

Approximately half of all human and mouse transcripts contain 
upstream ORFs (uORFs) — mRNAs that originate in the 5′UTR of 
a gene but are out of frame with the ORF. An expression analysis 
of ~11,600 matched mouse mRNAs and proteins shows that 
uORFs significantly reduce downstream protein expression. 
Mutations that alter the uORFs of some disease-associated 
genes reduce the expression of the downstream protein, 
indicating that uORFs could affect disease phenotypes.

in brief
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Instead of considering signalling in 
terms of a linear sequence, the con-
cept of modules as units of signalling 
activity is a useful way to represent 
complex biological networks, such 
as those involved in cancer. A recent 
study describes an approach to dis-
sect oncogenic signalling pathways 
into functional modules on the 
basis of gene expression signatures, 
which can then be used to analyse 
disease outcome and responses to 
therapeutics.  

Joseph Nevins and colleagues 
reasoned that whole genome expres-
sion data could be used to define 
oncogenic pathway modules. Using 
the Ras and E2F signalling pathways 
as examples, they defined a core set 
of genes for each pathway; for the 
oncoprotein Ras, these are genes that 
encode proteins that directly bind 
to Ras, and those with one degree of 
separation from Ras in a protein–
protein interaction network. Using 

the previously generated NCI-60 data 
set (which is composed of expression 
profiles of human cancer cell lines 
from a range of different tissues) as a 
source of expression data, the authors 
then used statistical analyses to iden-
tify genes related to the core pathway 
that showed similar variation in their 
expression as the core genes. This 
approach allowed them to generate 
signatures that correspond to sets of 
genes that share expression patterns. 

The authors identified 20 gene 
signatures in the Ras pathway and 
8 signatures in the E2F pathway. By 
comparing these signatures with the 
signatures of mutants that selectively 
activate downstream effectors or 
to signatures from cells that are 
sensitive to drugs that target specific 
pathway members, they could assign 
the signatures to specific signalling 
effectors, such as Raf or phosphati-
dylinositol 3-kinase for Ras signalling 
and S phase or mitotic events for E2F. 

This allowed them to define signalling 
pathway modules on the basis of 
expression signatures.  

Can module signatures be used 
to predict clinical outcome? Chang 
et al. analysed the response of colon 
cancer patients to the epidermal 
growth factor receptor (EGFR)-
specific therapy cetuximab. They 
derived a set of 20 gene expression 
signatures for EGFR from the 
NCI-60 expression data, and then 
compared the EGFR, Ras and E2F 
signatures to see if they could differ-
entiate between the gene signatures 
of patients who responded or did 
not respond to cetuximab. Only the 
EGFR signatures could distinguish 
between the two sets of patients, 
indicating the specificity of each set 
of signatures for a particular onco-
genic signalling pathway. Therefore, 
the oncogenic module approach 
can be used to identify clinically 
relevant tumour phenotypes. In a 
broader context, a modular model 
of pathway structure could also be 
valuable for studying the way that 
information is transmitted through 
cellular networks and the relation-
ships between signalling modules 
and phenotypes.

Meera Swami

ORIGINAL RESEARCH PAPER Chang J. T. et al. 
A genomic strategy to elucidate modules of 
oncogenic pathway signaling networks. Mol. Cell 
34, 104–114 (2009).
FURTHER READING Nevins, J. R. & Potti, A. 
Mining gene expression profiles: expression 
signatures as cancer phenotypes. Nature Rev. 
Genet. 8, 601–609 (2007).
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It is well known that codon bias 
and gene expression are correlated. 
The established explanation is that 
mRNAs with a high codon adapta-
tion index (CAI) — that is, with a 
high number of ‘preferred’ codons 
— are translated more efficiently 
because there are more tRNAs that 
match the codons. Now, however, 
Plotkin and colleagues show that it is 
mRNA structure not CAI that affects 
expression levels.

The authors generated 154 gene 
constructs that encoded the same 
green fluorescent protein (GFP) 

under the control of a T7 promoter, 
but in each construct they introduced 
random synonymous mutations 
in the third base positions of up to 
180 codons. When constructs were 
put into Escherichia coli cells, their 
fluorescence levels varied 250-fold. 
However, surprisingly, there was no 
correlation between expression of the 
construct and its CAI. 

Plotkin and colleagues looked 
at whether the folding energy of 
each GFP mRNA correlated with 
fluorescence. Although the structure 
of the entire mRNA had no bearing 
on expression, the folding energy 
of nucleotide positions –4 to +37 
explained over half of the variation: 
the tighter the folding, the lower the 
level of expression. These findings 
support the hypothesis that strong 
secondary structure at the 5′ end of 
an mRNA blocks ribosome binding 
and delays translation initiation. 

To test this idea, the authors 
added an identical stretch of 28 
codons with weak mRNA secondary 
structure to the 5′ end of 72 of  
the GFP constructs. As expected, the 
tagged constructs produced consist-
ently high levels of expression. The 

reduction in translation efficiency 
for mRNAs with strong folding at the 
ribosome binding site is consistent 
with previous studies that suggested 
that initiation, not elongation, is 
the rate-limiting step in mRNA 
translation. 

How can these results be rec-
onciled with the well-known link 
between CAI and expression level? 
The authors suggest that selection 
for efficient translation at the global 
level, rather than at the gene level, 
has led to an indirect link between 
expression and CAI among endog-
enous genes. In their model, high 
CAI speeds up elongation of a gene 
but does not affect its expression 
level. However, faster elongation 
means that fewer ribosomes are 
sequestered on the mRNA. This 
increases the total rate of protein syn-
thesis in the cell, thereby providing 
a selective advantage in terms of an 
increased rate of cell growth. 

Elizabeth Neame

ORIGINAL RESEARCH PAPER Kudla, G. et al. 
Coding-sequence determinants of gene 
expression in Escherichia coli. Science 324,  
255–258 (2009)
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Synthetic biologists dream of con-
structing gene expression networks 
with predictable functions. However, 
they come up against a frustrating 
problem: because the assembly 
parts (ORFs and control regions) 
are poorly characterized and limited 
in number, each new circuit has to 
be painstakingly tweaked until it 
behaves as intended. To overcome 
this hurdle Ellis and colleagues 
have generated and characterized a 
library of components, and then used 
computer modelling to inform how 
these components — in this case, 
promoters — should be assembled 
for particular uses.

To produce the promoter library 
a set of Saccharomyces cerevisiae 
promoters that can be regulated by 
TetR was generated using a synthesis 
protocol that specifically alters non-
essential sequences. The library com-
ponents were then classified by their 
expression output — as inferred from 
a reporter gene, EGFP — depending 
on the concentration of TetR.

An in silico prediction method was 
used to select which of the 20 promot-
ers would be the most appropriate to 
use in any particular type of circuit. 
For example, in a feed-forward loop 
two repressors (LacI and TetR) feed 
onto an output gene, but with TetR 
also inhibiting LacI. The challenge 
was to select, from the library, the LacI 
promoter that would yield a predicted 
expression landscape in response to 
varying concentrations of TetR and 
LacI inducers. The input–output 
landscape of the three experimentally 
constructed networks correlated well 
with computational predictions.

The approach was also effective 
when applied to a more complicated 
circuit, a genetic timer: here, expres-
sion levels switch (toggle) from one 
state to another depending on the 
relative concentration of opposing 

repressor molecules. Two libraries of 
promoters were used in this applica-
tion, and the model was derived by 
combining first principles with a 
single reconstructed circuit; however, 
as before, the experimental circuits 
behaved as expected.

The predictions associated with 
the genetic timer were applied to 
control the timing of activation of a 
yeast gene that triggers the clumping 
and sedimentation of yeast cells. This 
process allows cells to be removed 
easily from fermented liquid, and is 
therefore of interest in beer and wine 
production.

This off-the-shelf strategy promises 
to accelerate the rate of progress of 
synthetic biology by removing the fid-
dly adjustments that currently ham-
per the post-construction stage. And 
promoters are just the beginning — 
the same principles can be extended to 
other biomolecular components,  
such as RNAs or proteins.

Tanita Casci 

ORIGINAL RESEARCH PAPER Ellis, T. et al. 
Diversity-based, model-guided construction of 
synthetic gene networks with predicted 
functions. Nature Biotech. 19 Apr 2009 
(doi:10.1038/nbt.1536)
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 H U M A N  G E N E T I C  VA R I AT I O N

The diversity present in 5,140 human mitochondrial 
genomes
Pereira, L. et al. Am. J. Hum. Genet. 7 May 2009 (doi:10.1016/ 
j.ajhg.2009.04.013)

High-throughput sequencing is rapidly increasing the amount of 
data on human mitochondrial genetic variation. These authors 
developed a new computational tool, mtDNA-GeneSyn, which 
analyses diversity among mitochondrial genomes. Using this 
tool to analyse all mitochondrial DNA (mtDNA) data currently 
in GenBank, the authors provide an overall picture of human 
mtDNA diversity. The software is free to download, allowing 
other researchers to perform similar analyses as more data is 
deposited, and to assess mtDNA diversity in specific populations.

 T R A N s l AT I O N

Bases in the anticodon loop of tRNA prevent misreading
Murakami, H. et al. Nature Struct. Mol. Biol. 16, 353–358 (2009)

A sequence element that tunes Escherichia coli  
tRNAAla

GGC to ensure accurate decoding
Ledoux, S. et al. Nature Struct. Mol. Biol. 16, 359–364 (2009)

Using in vitro assays for peptide synthesis these papers show 
that the interaction between the anticodon on a tRNA molecule 
and its cognate mRNA codon is labile, as some variants lead  
to relaxed constraints on codon–anticodon interactions and to 
the insertion of a wrong amino acid. Such translational infidelity 
is caused by particular combinations of interacting base pairs 
(positions 32 and 38) on either side of the anticodon loop. The 
structural basis for the infidelity is unknown, but the suggestion 
that mutations at positions 32 or 38 are causal to several 
progressive human diseases is intriguing.

 G E N E  R E G U l AT I O N

Progressive lengthening of 3′ untranslated regions of 
mRNAs by alternative polyadenylation during mouse 
embryonic development
Ji, Z. et al. Proc. Natl Acad. Sci. USA 106, 7028–7033 (2009)

This paper reveals that an important means of regulating gene 
expression post-transcriptionally might be provided by the 
progressive lengthening of the 3′UTR of mRNAs. Such lengthening 
— which was observed in vivo and in vitro — is attributed to 
alternative adenylation, permitted by weak polyadenylation 
signals; the resulting AU-rich 3′UTRs would make them better 
targets for microRNAs, among other regulators.

 C O M P l E X  D I s E A s E

Multilocus Bayesian meta-analysis of gene-disease 
associations
Newcombe, P. J. et al. Am. J. Hum. Genet. 30 Apr 2009 (doi:10.1016/ 
j.ajhg.2009.04.001)

In meta-analyses of gene–disease association studies the 
widely used approach of pooling data for each SNP is 
inefficient because, often, only a subset of studies provide 
data about a particular marker. This study reports a generally 
applicable Bayesian, multimarker approach to meta-analysis 
that uses all data for a region or gene, irrespective of the 
specific markers that have been typed, to make efficient use of 
data from all constituent studies.
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 S M A L L  R N A S

A tiny stabilizer 
of development
A new paper provides the first 
experimental evidence that 
microRNAs (miRNAs) confer 
robustness, by showing that  
a Drosophila melanogaster miRNA 
buffers a developmental process 
against environmental fluctuation.

Li and colleagues investigated  
the role of miR-7 in sensory organ 
development. Previous studies had 
shown that, under uniform conditions, 
loss of miR-7 function has little  
impact on either the expression  
levels of its regulatory targets or on 
developmental outcome. Does miR-7 
have a role in stabilizing sensory 
organ development in less stable 
environments?

Using transgenes, reporter assays 
and mutant analyses, the authors 
carefully dissected the interactions 
between miR-7, its regulators and  
its targets during the differentiation 
of photoreceptors and 
proprioreceptors. In both cases, 
miR-7 functions as part of one or 
more feedforward or feedback loops 
in a way that is predicted to stabilize 
the expression of key determinants of 
cell fate. Indeed, mir-7 mutant larvae 
that were exposed to temperature 
fluctuations showed altered 
expression of these genes and 
defects in the specification  
and patterning of sensory organs.

Interestingly, although miR-7 is 
highly conserved from flies to humans, 
its functions are not; for example, it is 
not involved in vertebrate sensory 
organ development. The authors 
suggest that conserved miRNAs might 
be recruited into new regulatory 
interactions during evolution 
specifically to provide robustness  
to regulatory networks.

Louisa Flintoft

ORIGINAL RESEARCH PAPER Li, X. et al.  
A microRNA imparts robustness against 
environmental fluctuation during development. 
Cell 137, 273–282 (2009).
FURTHER READING Flynt, A. S. & Lai, E. C. 
Biological principles of microRNA-mediated 
regulation: shared themes amid diversity. Nature 
Rev. Genet. 9, 831–842 (2008)
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Plant biologists and biotechnologists 
have long suffered from the lack of 
an efficient and sequence-specific 
method for gene targeting. Two 
recent reports of successful gene 
targeting in maize and tobacco come 
as a welcome improvement on the 
laborious conventional mutagenesis 
or transgenesis approaches. For the 
first time, endogenous plant loci can 
be targeted at high efficiency. 

Both studies rely on zinc-finger 
nucleases (ZFNs) — engineered 
enzymes that create double-stranded 
breaks at specific loci and that have 

previously been used to modify,  
in vitro, plant transgenes and endog-
enous genes in human cells. ZFNs are 
a fusion between an endonuclease 
domain and a zinc-finger-based 
DNA recognition domain; this latter 
domain can be designed to recognize 
almost any DNA sequence, and 
therefore gives ZFNs their specificity.

Working in maize, Shukla and 
colleagues used a panel of pre-
validated ZFNs that were designed 
against two independent endogenous 
loci: IPK1, the product of which 
catalyzes the final step in phytate bio-
synthesis in seeds, and ZP15, which 
encodes a seed protein. Following 
pre-screening to determine the 
relative efficiency of their ZFNs, the 
authors detected modification in 
plants by selecting for the insertion 
of a herbicide tolerance gene or 
by amplifying and sequencing the 
targeted locus. As transgene insertion 
is very specific the authors were able 
to generate several independent lines 
of fertile plants that transmitted the 
modification to the next generation.

In an independent effort, 
Townsend and Wright et al. report the 
modification of multiple acetolactate 
synthase loci in tobacco plants; when 
inactivated, these genes render a plant 
resistant to two types of herbicide. 
For their ZFN design they relied on a 

publicly available resource from the 
Zinc Finger Consortium, and selected 
the molecules with highest specificity 
by pre-screening them in bacteria and 
subsequently in yeast.  Interestingly, 
in a small proportion of cases they 
also saw targeting over 1.3 kb from 
the site of cleavage. This suggests 
that it should be possible to modify 
plant genes even if their surrounding 
genomic sequence is not optimal for 
ZFN targeting.

The precision and efficiency of 
the ZFNs offer clear advantages for 
dissecting gene function in plants as 
well as for plant engineering for food 
or fuel. Given the versatility of ZFNs, 
this approach can be used in any 
plant species as long as it is amenable 
to DNA delivery. In the future, tar-
geted modifications could be identi-
fied in DNA-sequence-based screens; 
considering the advances in sequenc-
ing technologies, high-throughput 
plant genomic engineering could be 
just around the corner.

Magdalena Skipper, Senior Editor, Nature

ORIGINAL RESEARCH PAPERS Shukla, V. K.  
et al. Precise genome modification in the crop 
species of Zea mays using zinc-finger nucleases. 
Nature 28 Apr 2009 (doi:10.1038/nature07992) | 
Townsend, J. A. & Wright, D. A. et al. High-
frequency modification of plant genes using 
engineered zinc-finger nucleases. Nature 28 Apr 
2009 (doi:10.1038/nature07845)
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The holy grail for plant biologists
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always knew patients with Becker’s syndrome 
were missing nNOS, but a lot of people 
thought the fatigue was mainly due to the 
muscle weakness.

You direct an institute that focuses on 
therapeutic approaches. Does the way that 
biomedical research is funded encourage the 
clinical translation of basic research?
We’re lucky in that we’re very well funded. 
But it can be more difficult to get funding 
for work that’s considered pure applied 
research. There probably needs to be new 
ways to evaluate that work. It can be difficult. 
That kind of work doesn’t always lead to 
outstanding papers, Nature papers. Often, 
that work is done by companies. To get it 
done in academic institutions can be harder.

Will traditional gene therapy live up to its 
potential?
I agree with the statement of Harold Varmus 
that gene therapy will be used to cure disease 
in the next 10 to 100 years. It’s obviously the 
way to go to put the gene back in, but it’s 
very complicated and there are a lot of things 
that need to be worked out. In a number of 
cases, at least in the MD field, the challenge 
is secondary problems: delivery problems, 
potentially immune problems. If you put the 
DNA into muscle directly it incorporates 
it and you get a few fibres that stain quite 
nicely. But a few cells are not really going 
to help and you need to hit all the muscles. 
There are muscles like the diaphragm that 
are hard to get the gene into. So it’s going to 
take time. In terms of other avenues, exon 
skipping looks very promising, and so do 
therapies where you allow read-through of 
stop codons.

Does the media report disease-related 
research in a useful way?
The media is really important in getting 
information to the general public. Sometimes 
it gets inflated and that’s scary. Even 
scientifically I think we’re having a problem. 
If you search for “rescue for mdx” there are so 
many papers, but in most cases those are not 
going to be directly translated into therapies. 
I think that leads to a lot of people thinking 
that these diseases are about to be cured. I try 
to make sure that we don’t do that.

Was it exciting to make the link with a 
disease?
Disease really gave us the opportunity and 
the reagents to further the basic science. We 
went to Duchenne’s muscular dystrophy 
biopsies because we wanted to see what 
happened to proteins in the complex. I 
was teaching the red cell cytoskeleton for a 
graduate course and I had an idea that maybe 
if one protein was missing the whole complex 
would be lost. In the red cell cytoskeleton 
you can get fragile cells if you lose ankyrin 
or spectrin, and I was thinking that loss of 
these other proteins might cause MDs. So 
some of the work we do is using these clinical 
reagents, but it was initially because there 
weren’t that many mouse models at the time. 
We were getting new biopsies in and looking 
at new dystrophies and we got good at that, 
and now we have a whole centre dedicated 
to it. If 20 years ago I had made mouse or 
fly mutants then you would consider it pure 
basic science, but instead we’re using the 
natural resource of the MD genes that are out 
there in the human population.

How important is it for you to discuss your 
work with practising physicians?
Very important. We work together with 
physicians to try to identify new genes. At 
one meeting I presented a mouse model 
that’s defective for neuronal nitric oxide 
synthase (nNOS) [Campbell and his group 
recently published a paper in Nature 
using mouse models, which suggests that 
the muscle fatigue seen in patients with 
neuromuscular conditions is due to defective 
nNOS signalling] and a physician said “They 
look just like my Becker patients.” That was 
one of several hints with that study. We 

Your bachelor’s degree is in physics. Have you 
found that useful as a biologist?
The problem-solving aspect is what I find 
really helpful today. Especially early on in 
your career I think it’s important not to 
be too specialized, and having a diverse 
scientific background is really helpful. You 
never know where a research topic is going 
to lead.

How did your work on ion channels lead to 
your discovery of the dystrophin–glycoprotein 
complex?
When I moved to Iowa my goal was to 
clarify the channels involved in excitation–
contraction coupling. I thought I was set and 
nothing would change. I sent a paper in with 
a grant renewal to the Muscular Dystrophy 
Association (MDA), and in that paper we 
showed that the purified ryanodine receptor 
was a very large protein. Don Wood, who ran 
the research programme at MDA, had been 
at a meeting where Lou Kunkel had reported 
the mRNA size for the gene, and it was very 
large. Don Wood put Lou and I together 
and we quickly exchanged antibodies and 
within 2 weeks we knew that the ryanodine 
receptor and dystrophin were two separate 
proteins. That was the beginning of my work 
on muscular dystrophy (MD). We probably 
would have given up on it, but the next 
summer we were trying to isolate a combined 
receptor complex, and it was working with 
the calcium channel but this other protein 
was coming along that wasn’t working with 
the antibodies to the ryanodine receptor. 
Finally one day I stained with antibodies to 
dystrophin and dystrophin was there. We 
purified the proteins and ended up with the 
dystrophin–glycoprotein complex.

 
The 2009 March of Dimes Prize in 
Developmental Biology has been awarded 
jointly to Kevin Campbell of the University of 
Iowa and to Louis Kunkel of Harvard Medical 
School and The Children’s Hospital, Boston, 
for their pioneering work in identifying the genes and proteins that are disrupted in muscular 
dystrophies. The prize recognizes researchers whose work has contributed to our understanding 
of the science that underlies birth defects. We talked to the winners about their scientific 
careers and their views on biomedical research. This month’s interview is with Kevin Campbell, 
who spoke to Louisa Flintoft. The interview with Louis Kunkel will appear next month.

an InTervIeW WITH…

Kevin Campbell
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Over 1 million new cases of colorectal can‑
cer are diagnosed worldwide each year, and 
incidence seems set to rise with the progres‑
sive ‘westernization’ of lifestyles in Asian and 
African populations. It is the third most com‑
mon malignancy and the fourth biggest cause 
of cancer mortality1. Incidence rates closely 
parallel economic development, reflecting a 
westernized lifestyle and attendant risk factor 
exposures. However, manifestation of color‑
ectal cancer burden can also relate to longer 
life expectancy in developed populations, 
along with better diagnostic and recording 
tools. International cancer registry data indi‑
cate that the overall mortality rate is ~50%, 
with the single most important arbiter of sur‑
vival outcome being extent of tumour pro‑
gression at diagnosis. In Scotland, the 5‑year 
survival rate among young patients exceeds 
80% for those with localized tumours, but is 
only ~40% for those with metastatic disease 
at presentation2. Compelling evidence indi‑
cates that early detection and prevention by 
removal of premalignant polyps can reduce 
colorectal cancer mortality. Randomized 
trials of population screening have shown 
reduced mortality in subjects with an average 
risk3, and improved survival is also observed 
in genetically defined high‑risk groups who 
undergo more intensive surveillance4.

Colorectal cancer is a complex trait 
influenced by genetic and environmental 
factors and their interactions. The con‑
cept of familial colorectal cancer reflects 
one end of the plausible risk spectrum of 
contributory genetic variants. Population 
genetics theory predicts that the distribu‑
tion of allelic effects influencing complex 
traits is L shaped5,6, with a small number of 
variants having a large effect on phenotype 
and a large number of variants having an 
individually small effect. Rare variants of 
large effect contribute predominately in the 
subgroup of patients with disease segregat‑
ing in families. However, despite these large 
effects, the low allele frequency means their 
overall contribution to disease burden is 
small7. Growing evidence suggests that an 
appreciable component of the genetic con‑
tribution to ‘sporadic’ colorectal cancer is 
due to common variants with individually 
small effects, thereby invoking the com‑
mon disease–common variant paradigm 
in colorectal cancer. Analysis of phenotype 
concordance in twins estimates the heritabil-
ity of colorectal cancer on the liability scale to 
be around 0.35 (Ref. 8).

Until mid‑2007, no common variants 
contributing to colorectal cancer risk had 
been identified and consistently replicated. 

However, ten common low‑penetrance vari‑
ants contributing to colorectal cancer risk 
have since been identified using genome‑
wide association (GWA) studies, and repli‑
cated through genotyping tens of thousands 
of individuals. This has opened the door to 
unprecedented advances in our understand‑
ing of the role of common genetic variation 
in colorectal cancer. Initial results indicate 
that these variants exert only subtle  
effects on cancer risk, probably through 
influences on gene regulatory regions. 
The findings also offer the possibility of 
developing multi‑locus prediction models 
of genetic risk that could be combined with 
conventional risk factors. Such risk strati‑
fication models could be used to tailor the 
intensity or frequency of screening to the 
level of genetic risk, with the ultimate aim 
of reducing colorectal cancer mortality. 
Furthermore, the development of drugs that 
target specific pathways, for example, the 
transforming growth factor beta (TGFβ) 
superfamily signalling pathway9, might 
also enable rational drug discovery for both 
established cancer and for chemoprevention. 
Here, we review what has been learned dur‑
ing the last 18 months in the contribution of 
common genetic variation to the aetiology  
of colorectal cancer, and we discuss the  
challenges and opportunities that lie ahead.

GWA studies for colorectal cancer
Despite the known genetic contribution to 
colorectal cancer, mapping the contributing 
loci has been challenging. However, recent 
progress through the application of GWA 
approaches has identified a number of com‑
mon variants involved in the aetiology of 
colorectal cancer. A number of key enabling 
factors have made this feasible. First, recent 
years have seen the assembly of large sample 
sets from well‑characterized colorectal can‑
cer case–control series, with sufficient power 
to detect small effect sizes and account for the 
large number of statistical tests performed. 
Second, the HapMap project10 has enabled 
efficient selection of tagging SNPs (tSNPs) 
from across the genome. Finally, techno‑
logical advances in high‑order genotyping 
platforms have facilitated rapid, cost‑effective 
and reproducible genotyping of large  
numbers of markers in large sample sets.

New insights into the aetiology of 
colorectal cancer from genome-wide 
association studies
Albert Tenesa and Malcolm G. Dunlop

Abstract | Genome-wide association studies have recently identified ten common 
genetic variants associated with colorectal cancer susceptibility, several 
suggesting the involvement of components of the transforming growth factor 
beta (TGFβ) superfamily signalling pathway. To date, no causal sequence 
variants have been identified, and risk seems to be mediated through effects  
on gene regulation. Several markers are located close to poorly characterized 
genes or in gene deserts, raising challenges for elucidating mechanisms of 
susceptibility. Disease-associated common genetic variation offers the potential 
to refine risk stratification within populations and enable more targeted disease 
prevention strategies.
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General issues of GWA design, including 
choice of genotyping platform, SNP selection 
and stringent quality control, are discussed 
elsewhere11,12. GWA studies in colorectal can‑
cer have employed multi‑phased designs to 
increase statistical power in conjunction with 
selection strategies for cases in the first phase 
of the study. Rigorous selection of phenotype 
can help to boost power. For example, early 
onset patients are likely to be enriched for 
genetic contribution as environmental expo‑
sure accumulates with age13. Larger environ‑
mental variance constrains statistical power 
by reducing the contribution of genetic 
variance in older people. Using information 
about family history can also increase power, 
by enriching for cases in which genetic  
factors explain proportionately more of the 

trait variance. Thus, selection of cases with 
an affected first degree relative may reduce 
the required sample size by 50%, whereas 
increasing this to two affected first‑degree 
relatives could lead to a fourfold reduction14. 
Similarly, power may be enhanced through 
the use of ‘super‑controls’, such as individuals 
who are actively screened for bowel tumours, 
very elderly unaffected subjects or those 
without a family history of colorectal cancer. 
However, it remains to be confirmed whether 
two‑phased designs in combination with 
selection based on enriched phenotypes pro‑
vides any benefit in practice. Indeed, enrich‑
ing for a given phenotype in only one phase 
of a two‑phased design might be counterpro‑
ductive if the genetic contribution to the two 
subgroups is markedly different.

Insights into genetic architecture. To date, 
ten new loci have been identified through 
three GWA studies carried out in england15, 
Scotland13,16 and Canada16. The first phase 
of these studies involved modest sample 
sizes (~1,000 cases and ~1,000 controls 
genotyped for ~0.5 million tSNPs). Large 
international collaborative efforts were 
required to replicate the original findings 
to a sufficient level of statistical stringency 
(TABLe 1), amounting to >15,000 samples per 
risk locus identified. The first round of GWA 
data analysis resulted in identification of 
six associations, the reporting of which was 
fast‑tracked in a series of publications13,15–19. 
However, the effect size of these genetic vari‑
ants was modest (odds ratio (OR) ≈ 1.2). A 
meta‑analysis of all UK GWA data20 involved 

Table 1 | Loci associated with colorectal cancer risk from GWA studies 

Gene*  
(or locus)

chr snP study population 
for GWA study

number 
of phases

sample size (cases/controls) effect size: 
OR (95% ci)

Allele 
frequency

PAR‡ 

(%)
Refs

GWA study total

POU5F1P1, 
DQ515897, 
MYC

8 rs6983267 england 2 940/965 8,264/6,206 1.21 
(1.15–1.27)

0.51 9.7 15

POU5F1P1, 
DQ515897, 
MYC

rs10505477 Canada 5 1,226/1,239 7,480/7,779 1.17 
(1.12–1.23)

0.50 7.8 16

 POU5F1P1, 
DQ515897, 
MYC

rs7014346 Scotland 3 1,012/1,012 14,500/13,294 1.19 
(1.14–1.24)

0.37 6.6 13

SCG5, 
GREM1, 
FMN1

15 rs4779584 england 2 718/960 7,922/6,741 1.26 
(1.19–1.34)

0.18 4.5 18

SMAD7 
(intron 3)

18 rs4939827 england 2 940/965 8,413/6,949 1.18 
(1.12–1.23)

0.52 8.6 17

SMAD7 
(intron 3)

rs4939827 Scotland 3 1,012/1,012 14,500/13,294 1.20 
(1.16–1.24)

0.51 9.2 13

LOC120376, 
FLJ45803, 
c11orf53, 
POU2AF1

11 rs3802842 Scotland 3 1,012/1,012 14,500/13,294 1.12 
(1.07–1.17)

0.29 3.4 13

c8orf53, 
EIF3H

8 rs16892766 england 4 940/965 18,831/18,540 1.25 
(1.19–1.32)

0.07 1.7 19

FLJ3802842 10 rs10795668 england 4 940/965 18,831/18,540 1.12 
(1.10–1.16)

0.67 7.4 19

BMP4 14 rs4444235 United Kingdom 3 1,952/1,977 20,288/20,971 1.11 
(1.08–1.15)

0.46 4.8 20

CDH1 16 rs9929218 United Kingdom 3 1,952/1,977 20,288/20,971 1.10 
(1.06–1.12)

0.71 6.6 20

RHPN2 19 rs10411210 United Kingdom 3 1,952/1,977 20,288/20,971 1.15 
(1.10–1.20)

0.90 11.9 20

BMP2 20 rs961253 United Kingdom 3 1,952/1,977 20,288/20,971 1.12 
(1.08–1.16)

0.35 4.0 20

*In each case the genes or orFs given are within the linkage disequilibrium (LD) block tagged by the associated SNPs or there is circumstantial evidence of 
proximity and even location within the genomic structure of the gene (as is the case with SMAD7). However, considerable experimentation will be required to 
definitively establish which genes are responsible. It is even feasible that the associated SNP is tagging a regulatory region, but the functional effects are in a 
distant gene that is not part of that LD block. ‡The population attributable risk [PAr = AF(or – 1)/(AF*(or – 1) + 1)] (AF, allele frequency) is defined as the 
reduction in the incidence of the disease if the population were not exposed to the risk allele. Although widely used in epidemiology it has dubious 
interpretation and questionable practical benefit in the genetics context. Chr, Chromosome; CI, confidence interval; or, odds ratio.
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a comprehensive analysis of 1,632 cases 
and 1,977 controls genotyped for 550,000 
tSNPs (phase 1), followed by a second phase 
in which additional case–control sets were 
genotyped for the best‑supported SNPs. A 
total of 13,315 individuals were genotyped 
for 38,710 SNPs that were common to 
phases 1 and 2, harvesting all associations 
from phase 1 with a p value of less than 
0.039. All SNPs showing an association with 
colorectal cancer in the meta‑analysis  
(p < 10–5) were then systematically assessed 
in additional, independent case–control 
series from various populations, yielding 
four novel risk loci. As might be anticipated, 
these had even smaller effect sizes  
(OR ≈ 1.1)20 than those that had been fast‑
tracked previously. Taking all ten of these 
loci together, these explain approximately 
6% of the full‑sibling relative risk (λs; one 
way of measuring excess familial risk), corre‑
sponding to ~1.26% of the phenotypic vari‑
ance in the liability scale and 0.04% in the 
observed scale. Further collaborative efforts 
that involve larger sample sets and combine 
available GWA data will hopefully lead to 
the identification of new variants with even 
smaller effects. variants with larger effects 
that were not captured in phase 1 of the 
GWA studies to date could also be identified 
in such studies.

For illustrative purposes, and making the 
assumption that common genetic variants 
account for all the genetic contribution, we 
constructed a model from Scottish GWA 
data and estimated that up to ~170 common 
independent variants explain the observed 
genetic contribution to colorectal cancer 
(BOX 1). ~170 markers is only an indica‑
tive number of common variants (minor 
allele frequency (MAF) > 0.05), because the 
contribution of rarer, or private, variants 
and their effect on risk are unknown. In a 
multi‑locus model, an estimated 100 SNPs 
are required to achieve 80% accuracy of 
prediction of genetic risk. These SNPs would 
explain ~17% of the phenotypic variance in 
the liability scale, thereby providing useful 
predictive value of genetic risk. Hence, striv‑
ing to identify all of the genetic variance is 
not necessarily required to provide potential 
public health benefits.

Pathways to colorectal cancer susceptibil-
ity. The ten genetic associations identified 
to date have the potential to lead to novel 
insights into the molecular aetiology of 
colorectal cancer. The causal variants have 
yet to be identified at any of these loci but, 
intriguingly, none of the tSNPs is in a cod‑
ing region. Furthermore, common coding 

Box 1 | Number of loci and prediction of genetic risk

The number of loci that account for all the common genetic variance of colorectal cancer can  
be estimated. This requires the plausible assumption that top-ranking SNPs from our recent 
genome-wide association (GWA) study13 in a Scottish population-based case–control series do 
indeed contribute to the genetic variance of the disease. For the purposes of providing this 
indicative number of responsible variants, we also assume that common genetic variants (minor 
allele frequency > 0.05) account for the vast majority of the genetic aetiology.

Heritability (h
O

2) of the observed scale can be expressed as31:

×
Π λ

Π λ

where K is colorectal cancer prevalence in the population (0.004 in Scotland, from the Information 
Service Division Scotland colorectal cancer data 2005); p

i
 and λ

i
 are the frequency and relative risk 

of the risk allele, respectively — estimated from our Scottish GWA study data13. Derivation of this 
formula was based on a multiplicative model on the risk scale, both within and between loci 
(additive model on the log(risk) scale).
Hence, we estimate that ~172 common SNPs account for all of the genetic variance for colorectal 
cancer. Rare or private mutations would serve to change this estimate, depending on the overall 
number and effect size of each of such variants in the population.

number of loci required for genetic risk prediction in populations
Next, we estimated the accuracy of genetic risk prediction using increasing number of loci.  
We estimated the true probability of disease using effect sizes and allele frequencies from our 
GWA study13:

| ƒ Πλ

We also calculated the same probability when including only a subset of those SNPs in the model:

| ƒ Πλ

where f
0
 is the probability of disease for a person with wild-type alleles at all loci (assumed to be 1), 

n is the total number of true risk loci (which in this case is 172, see above) and m is the number of 
true risk loci that are included in the genetic risk prediction model sorted by the strength of stastical 
support (m is always less than or equal to n), and x

ij
 is the number of risk alleles for person i at locus j.

The ten loci published so far have an estimated accuracy of prediction of only 26% and explain 
1.26% of the phenotypic variance in the liability scale (full-sibling relative risk, λ

s
 ≈ 1.06) (see the 

figure, part a), corresponding to 0.04% in the observed scale. Furthermore, an estimated 100 SNPs 
are required in a model to achieve 80% accuracy of prediction of genetic risk, and these SNPs 
would explain ~17% of the phenotypic variance in the liability scale. Part b of the figure shows  
the accuracy of prediction of genetic risk with increasing number of loci. The contribution to the 
accuracy of prediction for the ten SNPs so far published from GWA data is represented by  
the green segment of the curve. It is manifest from the plateau of the plot in part b that there is 
only limited incremental value in identifying >100 SNPs.

The accuracy of prediction was estimated by calculating the correlation between the logarithms 
of true and predicted disease probabilities31. The relationship between the narrow sense 
heritability on the unobserved and presumably normally distributed liability scale and the 
heritability in the observed scale is:

where z is the height of the standard normal curve at the threshold that truncates the proportion 
K43. For simplicity, we assume that all the genetic variance for colorectal cancer is additive.
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sequence variants have so far not been 
identified by SNP fine mapping or by rese‑
quencing the relevant loci20. This suggests 
that the associated SNPs are tagging variants 
that influence gene expression. The effect 
size on cancer risk is modest, and so it is 
possible that the molecular consequences 
of the causative variation are too subtle to 
allow detection. However, it is also plau‑
sible that low‑risk genetic variation could 
be associated with functional effects that 
are relatively large, but that have a small 
impact at the level of cancer risk to humans 
(due, for example, to pathway redundancy, 
counterbalancing effects of other variants 
and gene–environment interactions). Thus, 
experimentation is underway to determine 
the effects of genetic variation on individual 
gene expression. It is important to stress that 
the GWA studies have identified loci associ‑
ated with colorectal cancer susceptibility 
and these need not necessarily contribute 
to tumour progression. However, five of 
the ten SNPs identified so far tag linkage 
disequilibrium (LD) blocks that include, 
or are near to, genes of the TGFβ super‑
family signalling pathway, which has been 
previously implicated in tumour biology. 
These TGFβ signalling components include 
SMAD7 (Refs 13,17), GREM1 (Ref. 18), the 
bone morphogenetic protein genes BMP2 
and BMP4, and RHPN2 (Ref. 20) (fIG. 1).

This overrepresentation of TGFβ compo‑
nents suggests a key role for perturbations of 
this pathway in colorectal cancer susceptibil‑
ity, implicating for the first time the TGFβ 
pathway in common inherited predisposition 
to colorectal cancer. The hypothesis that the 
TGFβ superfamily (TGFβ proteins, BMPs 
and activins) and affiliated proteins have a 
role in colorectal cancer is attractive, because 
TGFβ superfamily proteins are known to 
play an important part in developmental 
biology, cell proliferation, differentiation and 
migration. Rare, high‑penetrance variants 
in SMAD4 and the BMP receptor BMPR1A 
(also known as ALK3) are responsible for 
juvenile polyposis, an autosomal dominant 
colorectal polyposis syndrome with a high 
risk of colorectal cancer21. Nonrandom 
somatic mutations of SMAD4 and the TGFβ 
receptor TGFBR2 have been identified in 
colorectal cancer tissue; somatic TGFBR1 
mutations are also reported, and allele‑spe‑
cific expression of TGFBR1 may contribute 
to germ line susceptibility22. Several TGFβ 
superfamily components have been ascribed 
tumour suppressor roles in view of their 
induction of cell cycle arrest and inhibition 
of cell proliferation. Interestingly, the cancer 
initiation properties seem to be distinct from 
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Figure 1 | the tGFβ signalling pathway and its role in colorectal cancer. When activated, trans-
forming growth factor beta (TGFβ) isoforms bind cell surface receptors (TGFBrI, TGFBrII, TGFBrIII) 
in a highly cooperative process — only the first two are illustrated here, for simplicity — which act 
in consort to induce intracellular phosphorylation (P) of SMAD2 and SMAD3. These in turn bind the 
coSmad SMAD4, and translocate to the nucleus to drive Smad-responsive gene expression. TGFβ 
can also initiate Smad-independent pathways34. These include the mitogen-activated protein kinase 
(MAPK) and PP2A–p70S6 pathways (not shown here) and the activation of rho-like GTPases, such 
as rho-A. roCK is a rho-associated kinase, and rHPN2 is a rho-A effector35 that seems to regulate 
gene expression responses to TGFβ signalling. Silencing of rho-A expression in cancer cell lines has 
been shown to increase levels of e-cadherin36, the protein product of CDH1, another gene shown 
to be associated with colorectal cancer in genome-wide association (GWA) studies. Another, 
mitogenic, component of TGFβ–Smad signalling is the bone morphogenetic proteins (BMPs). BMP2 
and BMP4 can initiate cell signalling by binding to their type I receptors BMPr1A (also known as 
ALK3) and BMPr1B (also known as ALK6) or to a higher-affinity heteromeric complex formed by the 
type I receptors and BMPr2. Ligand binding is not sufficient to activate signalling, but requires  
the phosphorylation of the glycine–serine domain in the BMPrI receptors by the BMPrII receptors. 
The BMP receptor complex binds and induces phosphorylation of SMAD1, 5 and 8 (various combina-
tions of these three Smads form the receptor Smad, r-SMAD, which in turn can bind SMAD4 and 
translocate to the nucleus where it drives transcription). Inhibitory Smads have also been character-
ized, including SMAD6, which predominantly inhibits BMP stimuli, and SMAD7, which inhibits TGFβ 
signals. SMAD7 binds to the type I receptors and prevents recruitment and phosphorylation of 
r-SMADs. In addition, GreM1 is a BMP antagonist that influences bioavailability of BMP2 and BMP4. 
The genes in the TGFβ pathway demonstrated by recent GWA efforts to influence colorectal cancer 
risk are shaded blue. It is important to note that there is a requirement for a variety of transcription 
factors and co-factors that are not discussed further here. Genes previously implicated in the color-
ectal cancer susceptibility syndrome juvenile polyposis are shaded pink, namely SMAD4 (Ref. 37) 
and BMPr1A38. In addition, somatic mutations in colorectal cancer have been described for SMAD4 
(Ref. 39), TGFBr2γ and TGFBr1 (Ref. 42).
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those of progression, as tumour cells become 
resistant to TGF‑β  signalling, eventually 
overexpressing components of that pathway 
leading to enhanced tumour growth and 
metastatic potential23.

There are considerable challenges in 
elucidating the effect of common genetic 
variation on expression of individual com‑
ponents of the TGFβ signalling pathway, as 
well as unravelling the complex functional 
consequences of perhaps quite subtle per‑
turbations of the pathway at multiple points. 
Nonetheless, such insights should inform 
future rational drug development, probably 
by exploiting ‘pathway medicine’ approaches 
that target multiple components of the TGFβ 
signalling pathway.

Loci tagged by other SNPs also highlight 
candidate cancer susceptibility genes, includ‑
ing the cadherin CDH1 (Ref. 24), eukaryotic 
translation initiation factor 3 (EIF3H)25,26 
and the predicted gene FLJ3802842 (Ref. 27).  
The association at chromosome 8q24 is wor‑
thy of specific mention, owing to implica‑
tion of the locus in several cancer types28,29. 
The LD block associated with colorectal 
cancer includes POU5F1P1, a pseudogene 
of the candidate stem cell gene POU5F1(also 
known as OCT4). However, no gene product 
of POU5F1P1 or causative sequence variant 
has yet been identified. Another possible 
causal mechanism could be through effects 
on MYC expression (~340 kb distal), but 
there is no apparent relationship between 
8q24 genotype and MYC expression in 
tumours or in HapMap lymphoblastoid cell 
lines16. There is little doubt that elucidat‑
ing the functional consequences of genetic 
variants will be challenging. However, novel 
insights into disease causation are already 
being revealed and will lead to greater under‑
standing of the complexities of colorectal 
cancer risk at the biological level.

Clinical and public health implications
There are two ways in which understanding 
the molecular genetic aetiology of colorectal 
cancer could affect chemoprevention strate‑
gies. In the longer term, understanding the 
functional effects on the pathways involved 
could lead to identification of novel small 
molecule targets. However, in the more 
immediate future, identifying population 
groups at higher risk could result in a widen‑
ing of the therapeutic index of established 
chemopreventative agents, such as aspirin. 
The ‘number needed to prevent’ could be 
reduced, thereby balancing the risk of gas‑
trointestinal haemorrhagic complications 
against the need to reduce a predicted high 
risk of colorectal cancer.

Another tangible outcome that is relevant 
to public health is the potential for genetic 
risk stratification within populations. Thus, 
the invasiveness or frequency of surveil‑
lance could be tailored to the predicted level 
of risk imparted by genotypes at multiple 
loci within population subgroups. Using 
plausible assumptions, we estimate that the 
ten common variants currently identified 
have an accuracy of prediction of genetic 
risk of only 26% (BOX 1). By comparison, the 
accuracy of prediction of genetic risk using 
the family history of parents is √0.5h2 (Refs 

30,31), which for colorectal cancer is ~42% 
(h2 represents heritability). However, using 
only parental disease history for risk predic‑
tion in the offspring assigns equal genetic 
risk to all offspring. As siblings inherit dif‑
ferent alleles and combinations thereof from 
the four parental chromosomes, genomic 
profiling using a sufficient number of 
genetic markers could, in principle, provide 
better predictions of individual genetic risk 
than those based on family history alone. 
We estimate that prediction models of color‑
ectal cancer risk that are based on common 
genetic variants will require ~100 SNPs for 
an accuracy of genetic risk prediction of 
80% (BOX 1). environmental risk factors are 
major contributors to disease variance, and 
so inclusion of variables that reflect these 
environmental exposures (for example, age 
and gender) in the prediction model will 
further improve the overall predictive value 
of disease risk.

Challenges and opportunities
Despite advances in our understanding of 
the role of common genetic variation in 
colorectal cancer aetiology, considerable 
challenges lie ahead. These include: identi‑
fying the causative variants responsible  
for association signals; definitively estab‑
lishing the role of particular genes and 
elucidating the functional consequences 
of genetic variation; and determining the 
contribution of these loci to cancer risk 
in different ethnic groups. Furthermore, 
elucidating most of the genetic component, 
which is currently undiscovered, will be 
challenging and will probably be resistant to 
currently available methodologies.

The identification of causal variants will 
require a multidisciplinary approach involv‑
ing a range of expertise, including molecular 
and cell biology, animal models, statistical 
genetics, population genetics and bioinfor‑
matics. More than one gene is frequently 
tagged in the LD block indicated by the SNP 
association. As SNPs are highly correlated, 
it is unlikely that the causative variant can 

be distinguished from neighbouring SNPs 
by genotyping large sample sets. Combining 
functional analysis with deep resequencing 
of implicated regions using multi‑ethnic 
cohorts with different population histories 
(and therefore differing LD structures) 
might be a useful approach, especially in 
black African populations. Within 100 kb of 
the SNP that is at the peak of the 11q23 asso‑
ciation signal for colorectal cancer suscep‑
tibility there are four ORFs and a predicted 
microRNA binding site. Functional analysis 
of these genes and deep resequencing of 
Asian and european populations might help 
to pinpoint the causative variant in view of 
the population‑specific differences in color‑
ectal cancer risk13. The latest generation of 
high‑throughput resequencing technologies 
offer the potential to identify multiple low‑
frequency causative variants. Furthermore, 
massive parallel sequencing of RNA will 
allow systematic study of the transcriptome 
in colorectal epithelium in relation to geno‑
types at variants that have been shown to 
contribute to cancer risk32.

In terms of the genetic architecture of 
colorectal cancer susceptibility, the variants 
responsible for the extremes of the L‑shaped 
distribution of effects have begun to be 
elucidated. That is, highly penetrant low‑
frequency variants and common variants 
with low penetrance have been identified. 

Glossary

Excess familial risk
The increased risk of developing the disease in a relative 
of an affected individual. It is usually, and more 
appropriately, referred to for a specific type of relative. 
for example, the full-sibling relative risk (λs) is the 
increased risk of developing a disease for a full sibling of 
an affected person compared with the risk of a person 
from the general population.

Heritability
The proportion of phenotypic variance that is explained  
by inherited genetic factors.

Liability scale
The assumed and unobserved normally distributed  
risk scale. In the case of a disease, those individuals with  
a liability score above a specific threshold will have  
the disease.

Observed scale
for a disease trait, the observed scale of the phenotype  
is either disease or non-disease. The heritability in the 
observed scale depends on the disease prevalence.

Odds ratio
A measure of the effect size. It is the odds of exposure 
(that is, a specific allele) among the cases divided by the 
odds of exposure among the controls. In case–control 
studies, the odds ratio is used as an approximation to 
the relative risk.
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However, the middle part of the distribution 
is so far completely unexplored. One reason 
for this is because current SNP arrays are 
poor at tagging low‑frequency variants and 
so have low power to detect moderately rare 
variants, even those with moderate to large 
effects. Indeed, rare low‑penetrance variants 
may prove almost undetectable. Technical 
constraints have also limited our explora‑
tion of this middle zone, because sequencing 
strategies thus far have required isolation 
of specific regions of interest, an approach 
that does not lend itself to analysis of large 
numbers of samples. However, these prob‑
lems are progressively being overcome, and 
identifying ‘rare‑ish’ variants with moderate 
effects (that is, MAF ≈ 0.01; OR ≈ 5) will also 
benefit from large‑scale resequencing and 
genotyping efforts in large consortia, and 
from the 1000 Genomes Project. Owing to 
cost constraints, these efforts might initially 
be concentrated on regions that are identi‑
fied by GWA studies33 because they are good 
candidates. As the costs of whole‑genome 
sequencing come down, systematic searches 
for private mutations in a clinical genetics 
setting could become a possibility in the 
foreseeable future.
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Neurodegenerative diseases typically afflict adults in 
mid-life, and are characterized by motor or cognitive 
symptoms that get progressively worse with age and that 
usually reduce life expectancy. Human neurodegenera-
tive disease can result from a variety of environmental 
and genetic causes. Genetic factors in particular have 
been instrumental in developing our understanding of 
the aetiology and progression of such diseases, and can 
range from mutations that increase the risk for a particu-
lar disorder, to mutations that are the sole, direct cause of  
a disease. As with cancer, which is another collection 
of related diseases, neurodegeneration can result from 
dominant or recessive mutations. In this Review, we focus 
on the role of Drosophila melanogaster in characterizing 
‘neurodegeneration suppressor genes’, which we see as 
analogous to cancer tumour suppressor genes. Defined 
by recessive loss-of-function mutations that cause neu-
rodegeneration, such genes are required for maintaining 
the integrity of the adult central nervous system (CNS).

D. melanogaster has been a key tool in much of 
the work to identify genes involved in neuronal integ-
rity and to discover their functions. Gene discovery is 
quick and straightforward in the fly, as is the analysis of 
how separate genes function together, two points that 
we expand on in the following section. Other useful 
D. melanogaster techniques are also addressed below: the 
expression of transgenes that can be directed precisely in 
space and time, including RNAi constructs; and geneti-
cally mosaic flies, which are useful for identifying the  
location of gene function.

Although superficially different, humans and flies 
are remarkably similar in key respects. Crucial signal-
ling pathways in development, cancer and innate immu-
nity are conserved between the fly and humans1,2. The 
CNS of invertebrates and vertebrates share a common 
evolutionary origin3, and the fly has been used success-
fully for the genetic analysis of complex behaviours 
ranging from sleep4 to learning and memory5 to aggres-
sion6. Of the human protein sequences associated with 
disease in the Online Mendelian Inheritance in Man 
(OMIM) database, 74% have highly related sequences 
in the fly7 (see also the Homophila web site). Moreover, 
a number of dominantly inherited human neurodegen-
erative diseases, such as those caused by polyglutamine 
repeat expansions, have been successfully modelled in 
D. melanogaster by transgenic expression of the human 
disease genes (reviewed in Ref. 8). Subsequent screens 
for fly genes that modify the effects of toxic human 
proteins have been enormously successful, leading to 
new insight into these diseases and demonstrating the  
parallels between human and fly neurodegeneration.

Here we focus on a complementary approach, dis-
tinct from transgenic modelling of human neurodegen-
erative diseases: the identification of loss-of-function 
mutations in endogenous fly genes that cause brain 
degeneration. More than half of such genes either have 
human orthologues linked to disease or provide infor-
mation about conserved processes that are required for 
maintaining the structural integrity of the CNS — a 
tissue with complex cell types that, for the most part, 
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RNAi
RNAi in the adult fly is 
achieved with transgenic 
constructs expressing an 
inverted repeat sequence 
targeted to the mRNA of 
interest. The expressed dsRNA 
is processed in vivo into short 
interfering RNAs, which lead  
to degradation of the target 
gene transcripts for a 
loss-of-function mutant effect.

Mosaic
An animal comprised of tissue 
of different genotypes. In flies, 
mosaics are generated by 
site-specific recombination,  
to yield homozygous mutant 
tissue or cells in an otherwise 
heterozygous animal.

Maintaining the brain: insight into 
human neurodegeneration from 
Drosophila melanogaster mutants
Derek Lessing* and Nancy M. Bonini*‡

Abstract | The fruitfly Drosophila melanogaster has enabled significant advances in 
neurodegenerative disease research, notably in the identification of genes that are required 
to maintain the structural integrity of the brain, defined by recessive mutations that cause 
adult onset neurodegeneration. Here, we survey these genes in the fly and classify them 
according to five key cell biological processes. Over half of these genes have counterparts in 
mice or humans that are also associated with neurodegeneration. Fly genetics continues to 
be instrumental in the analysis of degenerative disease, with notable recent advances in our 
understanding of several inherited disorders, Parkinson’s disease, and the central role of 
mitochondria in neuronal maintenance.
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Glia
Support cells for neurons.

Phototaxis
Movement towards a light 
source. A behaviour often used 
in flies to test locomotor 
activity and eye function.

Parkinsonism
Showing symptoms 
characteristic of Parkinson’s 
disease (tremor, rigidity, 
slowing of movement, postural 
instability and shuffling gait) 
that respond to treatment  
with dopamine.

undergo no cell division or renewal during the lifetime 
of the animal. The last few years in particular have seen 
rapid advances in this field with screens to identify new 
fly neurodegeneration genes, and to elucidate the roles 
of genes previously known to be crucial in human neu-
rodegeneration. Below, we highlight examples showing 
how fly genetics can be used to address human disease. 
From a survey of currently known fly neurodegenera-
tion genes, five key cell biological processes stand out as 
vital for maintaining CNS integrity. Finally, we address 
insights from D. melanogaster mutants into the role 
of glia and cell–cell interactions in neuronal integrity. 
Parallels between the fly, mouse and human underscore 
the conservation of gene function in maintaining the 
nervous system, and suggest that further investigations 
in the fly will reveal additional insight relevant to the 
entire field.

Of screens and genes
Genes required for the maintenance of the adult fly brain 
have been discovered by three approaches: screens, can-
didate genes and fortuitous mutations. In screens to 
identify genes associated with neurodegeneration, the 
classic approach has been to select viable adult mutant 
fly lines with a behavioural defect, and then screen by 
histology for CNS degeneration. Interestingly, the first 
assay devised for the genetic analysis of fly behaviour 
was instrumental in the first discovery of a mutation that 
causes neurodegeneration in the adult fly, in the gene 
drop-dead (drd)8,9. later screens in Seymour Benzer’s lab-
oratory focused on mutants with shortened lifespans10,11. 
In the late 1970s, Heisenberg and Bohl screened for fly 
mutants defective in phototaxis and then performed a 
type of high-throughput mass histology on fly heads12. 
Recent screens have looked for degeneration in mutant 
flies that become paralyzed with a change in tempera-
ture13 or with mechanical stress14, or that have altered 
circadian rhythms15. The candidate gene approach is 
an alternative to screens — fly orthologues of mouse or 
human genes that are known to cause neurodegenera-
tion have been identified and characterized using this 
technique. Finally, many fortuitous mutations isolated 
in unrelated studies have shown unexpected loss of  
integrity of the brain.

Currently, 44 genes required for CNS integrity in 
D. melanogaster have been characterized (Supplementary 
information S1 (table); an expanded, updated version of 
the table is available at the Bonini laboratory website). 
A subset of these genes, those discussed most extensively 
in this Review, is shown in TABLe 1. A gene is included 
in Supplementary information S1 (table) if the recessive, 
loss-of-function mutation causes progressive, adult onset 
histological abnormalities in the fly brain. Retinal degen-
eration, a related topic, is addressed in BOX 1. with two 
exceptions, the genes in Supplementary information S1 
(table) have readily identifiable orthologues in mice and 
humans, and over half are related to mouse or human 
genes that are also associated with neurodegeneration. 
Below, three genes from the table are used to illustrate 
the advantages of D. melanogaster genetics that are  
crucial in addressing neurodegenerative disease.

swiss cheese. One of the mutations discovered in the 
Heisenberg and Bohl screen12 was named swiss cheese 
(sws), after the holes discovered in sections of mutant 
brains16 (see BOX 2 for a discussion of techniques). 
Characterization of sws in 1997 revealed that it encodes 
what was then a novel protein16, but 1 year later the 
human orthologue was found to be neuropathy target 
esterase17 (NTe; also known as PNPlA6). In mamma-
lian cells, the phospholipase activity of NTe breaks down 
the membrane lipid phosphatidylcholine to glycerophos-
phocholine18; sws mutant flies have excess phosphati-
dylcholine19, which may affect membrane properties 
in a deleterious manner. SwS and NTe also share a 
conserved domain that acts as a non-canonical regula-
tory subunit of cyclic AMP-dependent protein kinase 
(PKA)20. Inactive PKA is a tetramer of two regulatory 
subunits and two catalytic subunits; when the regulatory 
subunits bind cAMP, they release the catalytic subunits, 
which then become active. An N-terminal transmem-
brane domain anchors SwS (NTe in mammals) to the 
cytoplasmic face of endoplasmic reticulum membranes18 
and thus may sequester PKA catalytic subunits there. 
The PKA regulatory activity of SwS (discussed further 
in a later section) has at least a partial role in neurode-
generation, as exogenously expressed SwS with a muta-
tion in the binding domain cannot fully rescue the sws 
mutant defect20. Presumably, the partial rescue observed 
with this transgene is mediated through the intact  
phospolipase activity.

Biochemical activities of SwS and NTe seem to be 
conserved, but is this true of the role of NTe in main-
taining CNS integrity with age? Knockout of Nte in the 
mouse is lethal, but if loss of the gene is restricted to 
the CNS, then the mouse survives to adulthood but suf-
fers from neurodegeneration21. underscoring functional 
conservation, mutations in human NTE cause spastic 
paraplegia 39, a hereditary motor neuron degenerative 
disease22. Furthermore, NTe is a target of organophos-
phates, a class of compounds that includes many pes-
ticides and the neurotoxin sarin. Following long-term 
exposure, these compounds bind to the catalytic serine 
residue of NTe and cause axonal degeneration18. Thus, 
characterization of the sws mutation in flies led to a 
series of studies that defined biochemical activities of 
the NTe protein and revealed its role in disease and in 
response to environmental toxins.

The example of sws demonstrates one reason why 
studies of neurodegeneration in the fly are valuable: the 
unbiased, forward genetics screen is a classic method in 
D. melanogaster that has led directly to the identification 
of new neurodegeneration genes in mice and humans.

Pink1 and park. At least three inherited forms of parkin-
sonism are caused by recessive mutations. In two of these 
forms, loss of PINK1 (PTeN-induced putative kinase 1) 
or PARK2 (Parkinson disease 2, parkin) function causes 
familial juvenile onset parkinsonism23. Several groups 
have taken a candidate gene approach to studying the 
roles of these Parkinson’s disease genes in D. mela-
nogaster. One defect in Pink1 or parkin (park) mutant 
flies is abnormal wing posture. Ostensibly unrelated to 
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Table 1 | Neurodegeneration due to loss-of-function mutations

Fly gene Protein Mouse gene: 
knockout

Human gene: 
disease

notes

Ace Acetyl 
cholinesterase

Ache: delayed postnatal  
development, early 
death. 

ACHE • Fly: null allele is lethal. Large mutant brain clones induced in 
embryogenesis show degeneration62. Temperature-sensitive allele 
causes paralysis and quick death at 32°C and abnormal neuropil  
at 29°C63

Atpα Na+/K+ ATPase 
α subunit

ATP1A3*:dystonia 12. 
Heterozygous mice: 
learning defects, 
hyperactivity.

Atp1a3: 
neonatal lethal.

• Fly: degeneration with both recessive and dominant alleles65

• Mouse: β-subunit gene Atp1b2* knockout causes neurodegeneration 
and death at 17–18 days94 

• Human diseases caused by dominant allele

ATP6 F
1
F

0
-ATP 

synthase 
subunit

mt-Atp6 MTATP6*: Leigh 
syndrome

• Fly: subtle thoracic ganglia defects; no gross histological defects in 
aged brains. Enhances sesB phenotype. Thoracic muscle degeneration. 
Mechanical stress sensitivity. Abnormal mitochondrial ultrastructure68

bubblegum 
(bgm)

Fatty acid CoA 
synthetase

Acsbg1 ACSBG2 • Fly: histological defects in optic lobe only11

• Human: adrenoleukodystrophy is caused by a recessive X-linked 
ABCD1* allele, affecting a peroxisomal transporter involved in 
importation or anchoring of the synthetase

Cystein 
string 
protein 
(Csp)

Hsp40-like; 
component 
of synaptic 
vesicles

Dnajc5b DNAJC5B • Fly: subtle synaptic degeneration seen at TEM level58

• Mouse: knockout of paralogue Dnajc5* dies within 3 months, with 
progressive neuromuscular junction degeneration and behavioural 
abnormalities59

dare Ferredoxin 
reductase

Fdxr FDXR • Fly: hypomorphic allele; null alleles are larval lethal. Severe 
uncoordination43 

drop-dead 
(drd)

Membrane No significantly similar 
gene

No significantly 
similar gene

• Fly: abnormal glial morphology in young adults76

Eaat1 Glutamate 
transporter

Slc1a3: ataxia, abnormal 
Purkinje cell innervation 
by climbing fibres95 

SLC1A3 • Fly: RNAi. Behavioural defects. Increased sensitivity to paraquat64

• Mouse: knockout of neuronally-expressed paralogue Slc1a1* causes 
neurodegeneration96

easily 
shocked 
(eas)

Ethanolamine 
kinase

Etnk1 ETNK1 • Fly: mechanical shock causes brief hyperactivity and then paralysis; 
possible epilepsy model. Electrophysiological defects in giant fibre 
pathway33,97

fumble 
(fbl)

Pantothenate 
kinase

Pank1 PANK1 • Fly: hypomorphic alleles. Flight and climbing defects. Sensitive to 
paraquat36

• Mouse paralogue Pank2* knockout causes retinal degeneration
• Human: mutation of paralogue PANK2* causes pantothenate 

kinase-associated neurodegeneration

futsch Microtubule-
associated 
protein 1B

Mtap1b: central nervous 
system developmental 
defects

MAP1B • Fly: hypomorphic alleles; null alleles are lethal. Learning defect 
observed before brain histological defects. Partial rescue by Tau98

• Human: dominant splicing mutation in the paralogue MAPT* (Tau) 
causes frontotemporal dementia with parkinsonism

levy Cytochrome c 
oxidase (COX) 
subunit VIa

Cox6a1 COX6A1 • Fly: histological defects limited to retina and optic lobes99

• Human: Leigh syndrome can be caused by mutation of LRPPRC* or 
COX10*

parkin 
(park)

E3 ubiquitin 
ligase

Park2*: dopaminergic 
neuron loss (variable), 
behavioural defects

PARK2*: 
Parkinson 
disease 2

• Fly: principal pathology is in mitochondria of sperm and flight 
muscles. Dopaminergic neurons are smaller in size100,101

Pink1 Mitochondrial 
protein kinase

Pink1: normal number of 
dopaminergic neurons; 
mitochondrial defects

PINK1*: 
Parkinson 
disease 6

• Fly: conflicting data on dopaminergic neuron loss. Male sterility and 
wing, muscle and mitochondrial defects24–26

reverse 
polarity 
(repo)

Homeodomain 
transcription 
factor

Alx4: developmental 
skeletal defects

ALX4: parietal 
foramina 2

• Fly: hypomorphic allele. Apoptotic loss of both neurons and glia 
limited to optic lobe75

SNF4Aγ AMP-activated 
protein kinase γ 
subunit

Prkag2 PRKAG2: Wolff–
Parkinson–White 
syndrome

• Fly: mutation affects one of three isoforms39,102

• Human disease caused by a dominant allele

swiss 
cheese 
(sws)

Membrane 
lipid esterase; 
PKA regulatory 
subunit

Nte*: hippocampus, 
thalamus and cerebellar 
degeneration21

NTE*: spastic 
paraplegia 39

• Fly: increased apoptosis. Both neuronal and glial death12,16,19

• Mouse: neurodegeneration owing to conditional brain-specific 
knockout

A subset of the Drosophila genes associated with progressive, adult-onset histological defects in the fly brain, shown in full in Supplementary information S1 (table). 
*Mouse and human genes associated with neurodegeneration and that are orthologues of the respective fly genes, called by Flybase or InParanoid or by NCBI or 
Homologene. Mouse knockout phenotypes are from the Mouse Genome Informatics website; human diseases from Online Mendelian Inheritance in Man. TEM, 
transmission electron microscopy. 

R E V I E W S

NATuRe RevIewS | Genetics  vOluMe 10 | juNe 2009 | 361

© 2009 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Genetics

a b

Purkinje cells
Vertebrate neurons with huge, 
dense dendrites that integrate 
complex inputs in the 
cerebellum and project axons 
to the deep motor nuclei of  
the brain.

loss of brain integrity, the wing effect has been revelatory 
as it is caused by problems in underlying muscles with a 
high demand for energy, thus focusing attention on the 
role of mitochondria in Parkinson’s disease.

loss of either Pink1 or park in flies results in remarka-
bly similar effects in addition to the wing defect, including 
structural defects in mitochondria, muscle degeneration, 
shortened lifespan and male infertility24–26. A break-
through in the understanding of these genes came from 
a simple genetic experiment in the fly: the forced expres-
sion of the normal park gene in a Pink1 mutant back-
ground. This showed that park gene function can rescue 
all Pink1 mutant defects24–26. This is a classic example  
of an epistasis experiment — the study of combinations of 
gene activities, through either recessive loss-of-function 
or dominant gain-of-function mutations — and shows 
that PARK functions downstream of PINK1. The result 
has been confirmed in human cells: expression of PARK2 
in cells derived from two patients with different PINK1 
mutations can rescue the mitochondrial defect27.

PINK1 is a protein kinase principally localized to 
mitochondria, whereas PARK is principally cytoplasmic, 

suggesting the intriguing possibility that aberrant sig-
nalling between the mitochondria and cytoplasm may 
have a role in disease. Mitochondria are not static struc-
tures but are in a constant flux of fusion and fission in 
response to cellular conditions. Further evidence that 
PINK1 and PARK work together to regulate mitochon-
drial structure comes from genetic manipulation of 
mitochondrial dynamics in flies: Pink1 and park mito-
chondrial defects can be rescued by either upregulating 
a mitochondrial fission protein (DRP1) or knocking 
down mitochondrial fusion proteins (OPA1 or MARF; 
also known as MFN2)28,29. In humans, MFN2 (mito-
fusin 2) mutations cause the neurodegenerative disease 
Charcot–Marie–Tooth type 2A and, in the mouse, loss 
of Mfn2 in the cerebellum causes aberrant mitochondrial 
structure and function in Purkinje cells, resulting in their 
degeneration30.

The work with Pink1 and park demonstrates a second 
reason why neurodegeneration studies in the fly are valu-
able: epistasis experiments are routine in D. melanogaster 
and are a powerful approach to defining functional gene 
order in pathways conserved in the mouse and human.

Box 1 | Retinal degeneration in Drosophila melanogaster

Phototransduction — the conversion of light into neural 
signals — occurs through a G protein-coupled pathway. 
Mutations in many genes in this pathway in the fly 
typically induce light-dependent retinal degeneration, 
but not neuronal loss elsewhere in the fly82. However,  
as vision in the fly is not essential for viability or 
reproduction, the eye is an attractive tissue in which to 
model general neurodegeneration. A number of tools  
are available for such purposes. Genetic tricks include 
transgenic RNAi constructs targeted specifically to the 
developing eye or to mature photoreceptor neurons,  
and the generation of homozygous mutant eyes in an 
otherwise heterozygous animal83. Either method allows 
perturbation of the eye without affecting the viability of the animal as a whole. Methods for assaying photoreceptor 
degeneration include a simple behavioural assay, such as phototaxis (healthy flies run robustly towards light), or the 
electroretinogram, which measures the amplitude of phototransduction and the efficacy of the synaptic output of 
photoreceptor neurons. Photoreceptor loss can also be seen directly by histology or, more easily, by optical 
neutralization, commonly called the pseudopupil preparation. This visualization of the light-gathering organelles of the 
photoreceptors can be performed on unfixed, intact heads, allowing easy quantification84. The figure shows pseudopupil 
preparations of a normal retina (a) and a degenerate retina (b). The table highlights six genes associated with retinal 
degeneration that are unlikely to be directly involved in phototransduction. Roles for these genes in maintaining central 
nervous system integrity in the fly have not yet been addressed but are likely to exist, owing to their widespread 
expression or association of orthologues with neurodegenerative disease. Images reproduced from Ref 85.

Fly gene Protein Human gene: disease

Apc86 Binds β-catenin and microtubules APC: familial adenomatous polyposis coli

nmnat87 Nicotinamide mononucleotide 
adenylyltransferase

NMNAT1: (in the Wlds mouse, slowed axonal Wallerian 
degradation is caused by a gene fusion that includes 
Nmnat1) 

rhomboid-788 Mitochondrial fusion PARL: no known disease

Scs-fp  
(also known as SdhA)89

Succinate dehydrogenase SDHA: Leigh syndrome owing to mitochondrial 
complex II deficiency

Sod90 Cu/Zn superoxide dismutase SOD1: familial amyotrophic lateral sclerosis 
(dominant mutations)

Tefu (also known as ATM)91 Protein kinase ATM: ataxia-telangiectasia

torp4a92 Chaperone-like glycoprotein TOR1A: dystonia 1, torsion, autosomal dominant
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Thoracic 
ganglion 

Jump muscle

Flight muscles

Box 2 | Techniques used to study neurodegeneration in Drosophila melanogaster

Histology
The most common approach used to assess 
neurodegeneration in the fly is examination of sections of 
the brain, usually embedded in paraffin or plastic, typically 
treated with a nonspecific stain or contrast such as 
toluidine blue or autofluorescence (see the Flybrain 
website). The most striking lesions in these histological 
sections are the vacuoles or holes in the central neuropil or 
outer rind where most neuron cell bodies reside, as shown 
in the figure in a 20-day-old swiss cheese mutant brain (a) 
compared with the age-matched normal brain (b). Arrows 
indicate dying glial cells. An advantage of this method is 
that it is a direct assay of CNS defect; a disadvantage is its 
low resolution as commonly practiced, as one cannot 
determine which neurons are dying.

electron microscopy
A specialized form of histology, electron miscroscopy 
affords unparalleled resolution of sub-cellular structures 
and is the definitive technique for identifying autophagic 
defects. A disadvantage is that it is labour intensive, and 
antibody labelling can be difficult.

electrophysiology
Many preparations are commonly used for electrophysio-
logical recordings of neural activity. The giant fibre system 
(see the figure, part c) mediates the fly’s escape response. 
With a mix of electrical, cholinergic and glutaminergic 
synapses, this preparation is particularly useful for testing 
central nervous system function in the adult93. The giant 
fibre neuron (blue) is located in the brain and, in the 
thoracic ganglion, it synapses with a motor neuron (green) 
that directs the jump muscle and with an interneuron 
(black) that in turn synapses with five motor neurons (only 
one shown for clarity) that direct a set of flight muscles. 
Neurons and muscles are bilaterally symmetrical and only 
one side is shown for simplicity. Recordings can be made 
from the muscles, or intracellularly from the giant fibre 
axon or from the motor neurons. An advantage of this 
technique is that it provides a direct assay of neuronal 
dysfunction; a disadvantage is that is labour intensive.

Behaviour
Well-characterized behaviours in the fly range from mating to aggression. Climbing (sometimes called negative geotaxis) 
is the most commonly assayed behaviour with respect to fly neurodegeneration for three reasons: as a test of mobility, it 
can reflect the ataxia that is common in human neurodegenerative diseases; large numbers of flies can be tested quickly; 
and the behaviour is robust (for most strains, ~90% of flies will immediately start climbing the walls of a container after 
they have been tapped to the bottom). An advantage of this technique is that it correlates with human disease. 
Disadvantages are that a loss of climbing can be due to factors other than neurodegeneration, and the behaviour can vary 
significantly with genetic background.

Lifespan
Not all flies that die early do so from brain degeneration, but all neurodegenerative mutants have shortened lifespans. 
Therefore, a straightforward first look at a mutant can be obtained with a survival curve, which can be coupled with 
feeding toxins such as paraquat. Advantages of this technique are that it is easy to perform and correlates with human 
disease; disadvantages are that it is time consuming, there are possible causes other than neurodegeneration, it can vary 
significantly with genetic background, and it provides little insight into pathology.

See BOX 1 for techniques associated specifically with the eye. Parts a and b of the figure are reproduced, with 
permission, from Ref. 16  (1997) Society for Neuroscience.

Ubiquitin–proteasome 
system
Members of a large family  
of e3 ubiquitin ligases 
recognize specific substrate 
proteins, tagging them  
by polyubiquitination  
for degradation in the 
proteasome, a large  
cylindrical protein complex.

Autophagy
More precisely, 
macroautophagy — the 
engulfment of protein 
aggregates or organelles by 
vesicles with double-bilayer 
membranes, which then fuse 
with lysosomes for degradation 
of their contents.

Processes crucial to CNS integrity
The genes in Supplementary information S1 (table) can 
be classified according to five cell biological processes, 
although many of these genes have multiple roles (fIG. 1). 
Although this analysis stems from D. melanogaster 
neurodegeneration mutants, an important theme is 

the commonality of these processes between flies and 
mammals. The protein homeostasis process includes 
genes that function in both the ubiquitin–proteasome 
system and in autophagy or lysosomal degradation, a 
topic reviewed elsewhere31,32. Genes classified in the 
cytoskeleton process have roles both in the function of 
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Figure 1 | cellular processes implicated by neurodegeneration genes. A Venn diagram showing the relationships 
between five cellular processes and a suggested classification of the neurodegeneration genes from Supplementary 
information S1 (table), many of which have multiple roles.

Neurite
General term for axons  
and dendrites.

Amyloid
Protein aggregates that 
accumulate as fibres of  
7–10 nm in diameter with 
common structural features 
including β-pleated sheet 
conformation and resistance  
to detergents and proteases.

microtubules (which are the principal structural ele-
ment of long neurites) and in the actin-based cytoskel-
eton, which is vital for synapse formation and plasticity. 
Below, we highlight recent work on aspects of the other 
three processes: lipid homeostasis, signal transduction 
and mitochondrial function.

Lipid homeostasis. lipids serve as the key constituent 
of membranes, as a source of energy and as signalling 
molecules. A number of D. melanogaster neurodegen-
eration mutants have been linked to pathways of lipid 
homeostasis. ethanolamine kinase, encoded by eas33, 
catalyses the first step in one pathway for synthesiz-
ing phosphatidylethanolamine, a phospholipid that in 
mammals is enriched in neuronal and mitochondrial 
membranes34. exactly how phospholipid composition 
could affect degeneration is unclear, but one possibility 
involves membrane properties such as fluidity, which 
could influence channel or neurotransmitter functions. 
Furthermore, different organelles can have characteris-
tic phospholipids in their membranes, and so altering 
phospholipid composition could affect, for example, 
organelle trafficking35.

Three other genes linked to neurodegeneration are 
involved in fatty acid catabolism (fIG. 2). fbl (fumble) and 
Ppcs (phosphopantothenoylcysteine synthetase) have 
recently been characterized and they encode enzymes 
in the pathway for synthesis of coenzyme A, which is 
required for the first step in the degradation of fatty 
acids36. bgm (bubblegum) encodes a fatty acid coenzyme A  
ligase that seems to be specific for very long chain fatty 
acids. Degeneration in bgm mutants can be partially 
rescued by feeding the flies a fatty acid component of 
‘lorenzo’s Oil’, a putative preventive treatment for adre-
noleukodystrophy, perhaps by inhibiting the synthesis 
of very long chain fatty acids11. Together, fbl, Ppcs and 

bgm could affect neuronal membrane properties or 
energy availability. If the latter function is vital, then an 
interaction would be predicted between these genes and 
those encoding the mitochondrial fatty acyl transloca-
tion apparatus (fIG. 2), which consists of a translocase and 
enzymes which attach and remove fatty acids from the 
carrier molecule carnitine37.

Cholesterol is an essential constituent of animal 
membranes and has been linked to Alzheimer’s disease. 
Deposition of amyloid-β peptide into amyloid plaques, the 
hallmark of Alzheimer’s disease, is enhanced by high cho-
lesterol levels through unknown mechanisms, perhaps 
through changes in membrane properties38 — APP, the  
amyloid-β precursor, is a transmembrane protein. In  
the fly, SNF4Aγ mutants have a 40% reduction in choles-
teryl ester levels, which may increase free cholesterol, and 
loss of Appl, the fly version of APP, enhances degenera-
tion in SNF4Aγ mutants39. SNF4Aγ encodes a subunit of 
AMP-activated protein kinase (AMPK), discussed fur-
ther below. Although flies do not synthesize cholesterol 
de novo, they do have HMG CoA reductase, the enzyme 
that catalyses the rate-limiting step in cholesterol synthe-
sis in vertebrates and that is directly phosphorylated and 
inhibited by AMPK40. loss of one copy of the gene that 
encodes HMG CoA reductase (Hmgcr) partially rescues 
the degeneration in SNF4Aγ mutant flies, and overexpres-
sion of Hmgcr enhances degeneration39. Statins — a class 
of compounds that target HMGCR and are used to treat 
high blood cholesterol levels — seem to reduce the risk 
of Alzheimer’s disease38, and feeding a statin to SNF4Aγ 
mutant flies decreases degeneration39. Cholesterol is 
a versatile lipid: it is the precursor of hormones (see 
below), an adduct of signalling proteins41 and a regulator 
of membrane fluidity with a key role in synapse func-
tion42. The relative importance of each of these roles in  
neurodegeneration remains to be determined.
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Figure 2 | neurodegeneration proteins associated with the mitochondrion. Gene products from Supplementary 
information S1 (table) are highlighted in orange. In black are proteins not in the table that genetically interact (or are 
predicted to interact) with the neurodegeneration proteins. Small molecules are shown in bold type. At the bottom left, 
transport of mitochondria into neurites depends on the (+) end-directed motor kinesin and on microtubules (pink), 
which are stabilized by FUTSCH. The dare product transfers electrons from NADPH to adrenodoxin, which in turn 
transfers them to a cytochrome P450, which catalyses the first step in steroid hormone synthesis. On the left, fatty acids 
are activated by a number of steps before importation (black dashed arrow; see text) into the matrix for oxidation. 
Together with the citric acid cycle, these pathways generate the electron carriers NADH and FADH

2
, which in turn 

power the complexes of the electron transport chain (blue). Proton flux across the inner membrane is indicated by 
dashed arrows. Incoming protons drive synthesis of ATP, which is transported out of the matrix (dashed arrow) by the 
ATP–ADP translocator (light green). Low levels of ATP generation result in activation of AMP-activated protein kinase 
(AMPK; made up of ALC and SNFAγ). At the bottom right, PINK1 regulates TRAP1 and the localization of Parkin (PARK; 
see text); Pink1 and park interact with genes that regulate mitochondrial fission and fusion, consistent with these gene 
products acting downstream of PARK, as shown here, although there is no direct evidence for this yet. PINK1 also 
regulates another parkinsonism protein, HTRA2, and a Na+/Ca2+ antiporter activity (see text). High Ca2+ levels in the 
matrix trigger formation of the permeability transition pore (PTP), through which cytochrome c can be released, 
activating caspases and apoptosis. Not shown are apoptosis-inducing factor and members of the BCL2 family, proteins 
that also regulate apoptosis and translocate between the cytoplasm and the outer surface of mitochondria72.

Ecdysteroids
Steroids that are similar in 
structure to ecdysones, found 
in arthropods and some plants.

Ecdysone
Steroid hormone found in 
arthropods. In insects, 
20-hydroxyecdysone 
stimulates moulting and 
metamorphosis.

In flies, dare activity is required in mitochondria for 
the synthesis of ecdysteroids from cholesterol (fIG. 2). 
Feeding larvae ecdysone rescues an early developmental 
defect caused by null dare mutations43 and, as neuronal 
expression of dare can rescue adult neurodegeneration44, 
there may be a role for ecdysteroid synthesis in CNS 
maintenance. The mammalian gene NPC1 presents an 
interesting parallel to the dare story. Niemann–Pick dis-
ease can be caused by loss of NPC1 and is characterized 
by misregulated cholesterol and sterol trafficking. Mice 
lacking Npc1 have many of the same neurodegenerative 
symptoms as patients with Niemann–Pick disease, as 
well as deficits in the neuron-specific synthesis of ster-
oid hormones45. Strikingly, these effects can be rescued 
by feeding the Npc1-null mice a brain-specific steroid45. 
The dare and Npc1 results raise the intriguing possibility 
that steroid hormone signalling in the adult brain plays a 
part in maintaining morphological integrity.

Signal transduction. A number of the genes classified  
in fIG. 1 implicate known signal transduction pathways in  
neurodegeneration, but at present few molecular details 
are known about how dysfunction of these pathways 
causes degeneration. alc and SNF4Aγ, encoding the 
β- and γ-subunits of AMPK, respectively, are the only 
genes that can be classified into three of the processes 
depicted in fIG. 1, thus seeming to be at a nexus of cel-
lular pathways involved in neurodegeneration39,46. 
AMPK is a crucial control point for metabolism and 
is composed of the catalytic α-subunit, the β-subunit 
(which seems to be a scaffold), and the γ-regulatory 
subunit, which binds AMP40. Rising AMP levels indicate 
an energy deficit, which activates the kinase40 (fIG. 2). 
The sws mutation suggests a role for PKA in main-
taining CNS integrity (discussed above); PKA func-
tions in a well-characterized pathway that is required 
during development and for learning and memory47, 
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Excitotoxicity
The over-stimulation of 
excitatory neurotransmitter 
receptors, which causes an 
influx of calcium in the 
postsynaptic neuron. 

and that plays a part in axon regeneration48. Both  
AMPK and PKA signalling are essential for the develop-
ment and function of many cell types, and so uncovering 
the details of how these specific pathways affect brain 
integrity will require the use of tools for investigating  
their roles specifically in mature neurons.

Recent mammalian cell culture experiments that have  
grown out of the Pink1–park epistasis experiments 
have shed further light on this mitochondrial pathway. 
Although PARK is typically cytoplasmic, coexpression 
of PINK1 causes translocation of PARK to mitochon-
dria; translocation depends on PINK1 kinase activ-
ity49. Further experiments have suggested that PINK1 
may directly phosphorylate PARK49. In mammalian 
cells, PARK can mediate the autophagic engulfment 
of dysfunctional mitochondria50. How this is done is 
unclear, although PARK has alternative ubiquitin ligase 
activities51 that are associated not with proteasomal 
degradation but rather with other processes, such as 
protein trafficking52. A likely direct substrate of PINK1 
was recently shown to be the serine protease HTRA2 
(Ref. 53), which is released from mitochondria during 
apoptosis and has pro-apoptotic activity54. However, 
loss-of-function mutations of HTRA2 in humans can 
cause Parkinson’s disease, and knockout of Htra2 in 
mice causes parkinsonism-like defects54. Pro-apoptotic 
activity for D. melanogaster HtrA2 has been shown 
recently55,56, but a role for the fly gene in neurodegen-
eration is unknown at this point, and the mechanism of 
HTRA2’s role in CNS integrity remains unclear.

Many of the neurodegeneration-associated signal 
transduction genes play a direct part in neuronal activ-
ity, either by maintaining membrane excitability or by 
mediating signals across the synapse. For example, CSP 
is a synaptic vesicle protein that is required for proper 
neurotransmitter release57. Since its initial characteriza-
tion in flies58, loss of CSP has been shown to cause neu-
rodegeneration in the mouse59 and, surprisingly, this can 
be rescued by upregulation of α-synuclein60 (dominant 
mutations of which, including increased copy number 
of the normal gene, are a cause of Parkinson’s disease61). 
These studies reveal a potential overlap in biologi-
cal function between CSP and α-synuclein at the syn-
apse, and the susceptibility of neurons to toxicity from  
abnormal synaptic function.

Ace encodes acetylcholine esterase, which degrades 
the neurotransmitter acetylcholine; work on Ace in the  
fly 30 years ago thus implicated excitotoxicity as a 
mechanism for neurodegeneration62,63. Similar to ace-
tylcholine esterase, the transporter encoded by Eaat1 
buffers an excitatory neurotransmitter, in this case 
glutamate64. Furthermore, excessive neuronal firing is 
observed in neurodegenerative, dominant mutations 
of Atpα65, which encodes the α-subunit of the Na+/K+ 
ATPase. Collectively, these studies highlight the role 
of excitotoxicity in neural integrity. By contrast, other 
electrophysiological studies show decreased transmit-
ter release and reduced phototransduction and synaptic 
transmission in spin mutants66,67. Perhaps CNS integ-
rity in the adult requires that neurons be maintained 
in a ‘Goldilocks state’ of neither abnormally high nor 

abnormally low levels of activity, a phenomenon paral-
lel to vertebrate neural development, in which excess 
neurons are trimmed in a manner that is dependent on 
their level of activity.

Mitochondrial function. Mitochondria are central to the  
processes affecting neurodegeneration (fIG. 1): the set  
of genes affecting mitochondria overlaps each of the 
other four sets described. fIGURe 2 illustrates the func-
tions of gene products from Supplementary information  
S1 (table) that are associated with mitochondria. The 
synthesis of the cellular energy currency ATP is the 
principle purpose of mitochondria, and is directly 
implicated in neuronal integrity by mutants in levy 
and ATP6, which encode components of the electron 
transport chain, and by the sesB product, which trans-
ports newly synthesized ATP to the cytoplasm. ATP6 
is the only gene implicated so far in D. melanogaster 
neurodegeneration that resides in the mitochondrial 
genome. The ATP6 mutation arose spontaneously in 
a sesB mutant background, and it has a mild effect 
on neuronal integrity when it is the only mutation68. 
Interestingly, patients with the human disease associ-
ated with the sesB orthologue (progressive external 
opthalmoplegia 2) also have multiple, varying mito-
chondrial DNA deletions, raising the possibility that 
nuclear gene mutations that cause mitochondrial dys-
function also leave mitochondrial DNA in a state more 
vulnerable to lesions69. Reactive oxygen species such as 
superoxide (O2

–) are toxic products of mitochondrial 
respiration, are associated with DNA damage and have 
long been suspected as a cause of ageing and neurode-
generation70. For example, the Sod product superoxide 
dismutase scavenges O2

– (BOX 1). TRAP1, a mitochon-
drial chaperone that is phosphorylated in response to 
oxidative stress, is a recently described in vivo substrate 
of PINK1 in human cells71. PINK1 can protect these 
cells against oxidative stress, an activity that depends 
on TRAP1 (Ref. 71).

Mitochondria are not simply passive passengers  
in eukaryotic cells. They regulate their morphology in  
response to specific cellular needs and their own level of 
functionality, as discussed above with respect to PINK1 
and PARK in D. melanogaster. Furthermore, mitochon-
dria integrate apoptotic signals and facilitate apoptotic 
cell death. A key event to initiate apoptosis is the opening 
of the permeability transition pore72; this allows release 
into the cytoplasm of cytochrome c, apoptosis-inducing 
factor and perhaps HTRA2 (see above). The pore is 
opened following increased Ca2+ concentration in the 
mitochondrial matrix. Recently, a Na+–Ca2+ antiporter 
activity, which has not yet been molecularly character-
ized in mammals or in flies, was shown to be blocked in 
cultured mammalian Pink1 mutant neurons, resulting  
in increased mitochondrial Ca2+ levels73. Thus, misregu-
lated apoptosis may be a contributing cause of neuronal 
death in Pink1-dependent parkinsonism. Indeed, the 
proximal cause of neuronal death for many of the mutants 
in Supplementary information S1 (table) is apoptosis, 
although in many cases apoptosis may be triggered  
simply in response to an underlying pathology.
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Haemolymph
The interstitial fluid in insects, 
which have an open circulatory 
system. Unlike blood, 
haemolymph has only a small 
role in carrying O2 and CO2, 
which is principally done by  
the tracheal system.

Optic lobes
Large, bilaterally symmetric 
structures of the fly brain  
that process visual input.

Glia and cellular interactions
The discussion above is largely focused on cell- 
autonomous ways that neurons can die, that is, from 
intrinsic problems such as dysfunctional mitochon-
dria. But neurodegeneration can occur through aber-
rant cell–cell signalling as well, implicated by genes that 
play a part in synaptic transmission and that suggest a 
role for neuronal steroid hormones. Glial interactions 
are a clear example in which cells are necessary for the 
proper maintenance of neighbouring neurons. Below we 
consider fly genes that have implicated glia in neurode-
generation, and how genetically mosaic flies can uncover 
roles for cell–cell signalling in neuronal maintenance.

Glia carry out essential functions in vertebrates, such 
as modulation of synapses, formation of the blood–brain 
barrier, basic immune system duties and protection of 
long axonal tracts. All of these roles have clear parallels 
in the fly74. For example, although flies do not have a vas-
cular circulatory system, glia form a blood–brain barrier 
analogue by sealing off neurons from the surrounding 
haemolymph. Flies do not have an adaptive immune sys-
tem, but fly glia perform some of the immune tasks of ver-
tebrate microglia, such as engulfing dead neurons. Finally, 
although flies do not have myelin, they do have a glial 
cell type that ensheaths axons — comparable to Schwann 
cells, which myelinate long axonal tracts in mammals. 
Thus, glia are essential for proper neuronal function 
in flies, and indeed four genes in TABLe 1 implicate  
glial function in the maintenance of the brain.

The expression of two of these genes — repo and 
Eaat1 — is restricted to the glia. The RePO protein is a 
transcriptional regulator that is required for glial devel-
opment; null alleles are lethal, reflecting the essential 
role for glia in the animal. A partial loss-of-function 
allele of repo reveals a role for the gene in maintaining 
the adult CNS75, although the specific defects in these 
mutant glia that cause neuronal loss are unclear. Eaat1, 
the transporter mentioned above, probably scavenges 
excess glutamate, which is a neurotransmitter. The trans-
porter is enriched in glial membranes at synaptic clefts, 
and thus this gene implicates D. melanogaster glia in  
modulating synaptic activity64.

Flies mutant for drd seem to be normal for ~1 week, 
then suddenly become uncoordinated, dying within 
hours with holes throughout the brain. Glia in drd 
mutants have structural defects, and there are subtle 
glial abnormalities in young adult mutants, which are 
apparent before the onset of behavioural defects76. The 
location of drd function was addressed in the early 1970s 
in genetically mosaic flies that are partly mutant for drd 
and partly normal8. Strikingly, most flies with heads that 
were half mutant and half normal behaved like normal 
flies and had normal brain morphology. That is, in these 
animals brain histology was normal on the side of the 
head that was genotypically mutant. Therefore, the func-
tion of drd mutant tissue can be rescued by adjacent 
normal tissue, implying the existence of drd-dependent 
diffusible signals.

Young adult sws mutants also have an early glial 
defect: multiple glial membranes wrap adjacent neur-
ites that, normally, are wrapped by only a single layer16. 

eventually, glia die along with neurons19. In contrast to 
the non-autonomy of drd mosaics, however, degenera-
tion in mosaic sws flies corresponds to genotypically 
mutant parts of the brain16, ruling out a long-range, 
sws-dependent signal. The method that is used to con-
struct the mosaic flies was the same that was used to 
analyse drd, producing broad swatches of mutant brain 
that can shed little light on a possible requirement for 
sws activity in glia, which are intermingled with neu-
rons. Other methods of making mosaic flies, such as 
looking at sws mutant glia situated adjacent to normal 
neurons, could address questions such as sws-dependent 
glial–neuronal interactions. The reciprocal experiment 
— determining the degree of rescue in a mutant animal 
following targeted expression of the wild-type gene — is 
also informative. For example, in flies, neuronal expres-
sion of normal NPC1 can rescue NPC1 mutant adults 
and, interestingly, glial expression of the normal gene 
also rescues the mutant phenotype, although not as effi-
ciently77. In summary, as is the case in higher organisms, 
glial function is crucial for neuronal integrity in the fly, 
and the repertoire of tools for fly genetics should allow 
for both glial function and interneuronal signalling to be 
addressed systematically.

Conclusions
The genes discussed in this Review share a number of 
themes. First, most are widely expressed, either ubiq-
uitously or enriched throughout the CNS (interesting 
exceptions being Eaat1 and repo, which are restricted to 
glia). Second, behavioural defects are common in flies 
that are mutant for these genes. Third, all these D. mela-
nogaster neurodegeneration mutants have shortened 
lifespans, which correspond with the severity and time 
course of degeneration (see below). These aspects of fly 
neurodegeneration mutants mirror observations of neu-
rodegenerative diseases in humans: widespread expres-
sion of causative genes, neurological symptoms such as 
ataxia or tremor, and early death.

A variation among the genes is the spatial extent of 
degeneration that occurs in the brains of mutant flies. In 
many cases, lesions are seen throughout the brain and 
even in the thoracic ganglion (the large ganglion that is 
a thickening of the ventral nerve cord). In other mutants, 
lesions are seen only in specific subregions of the brain, 
typically the optic lobes. The time course of degeneration 
can also vary widely among the mutants: from hours in 
the case of dare43 to approximately 1 month in the case 
of Adar78. Moreover, whereas adult dare mutant flies die 
within a few days, Adar mutants can live nearly as long 
as wild-type flies. Such variation is probably due only 
partly to the absolute requirement for a particular gene 
in maintaining CNS integrity. Other factors include pos-
sible earlier roles in development and the strength of the 
mutant allele.

Undiscovered neurodegeneration genes. Identifying new 
genes with a role in maintaining adult CNS integrity  
in the fly is perhaps the fastest way to identify them in 
humans, given the ease of genetic screens for brain integ-
rity mutants and the range of genetic tools available for 
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assessing gene function. There are almost certainly many 
as-yet undiscovered gene activities that are required for 
maintaining the CNS. D. melanogaster screens that are 
specifically designed to identify neurodegeneration 
genes have not been any more successful than other 
methods in flies: 14 genes in Supplementary information  
S1 (table) were identified in such screens; another 16 
were candidate genes; and another 14 were fortuitous 
mutations. Probably owing to their labour-intensive 
nature, none of the previous screens achieved saturation, 
as most of the relevant genes are represented by single 
alleles. Genes with a narrow role in maintaining a spe-
cific neuronal subtype may be underrepresented owing 
to technical limitations (see below); most of the genes 
surveyed here cause broad neurodegeneration when 
mutated. Genes that are essential for development are  
also underrepresented: all those discussed here that  
are characterized by complete loss-of-function muta-
tions are viable. This limitation could be overcome by 
the study of gene activity in differentiated adult neurons 
using transgenic RNAi constructs and, if necessary, 
methods to control expression of the RNAi construct 
temporally79. Developmentally essential genes can also 
be analysed in genetically mosaic flies.

Fly genes and human neurodegeneration. In a number 
of cases the mouse or human orthologue of a fly gene in 
Supplementary information S1 (table) is directly asso-
ciated with neurodegeneration. There are three other 
possible relationships between a fly gene and mamma-
lian brain integrity. The mouse or human orthologue 
may be closely related to another disease-associated 
gene through gene duplication (for example, futsch in 
TABLe 1). Second, a fly gene may encode a protein that is 
part of a complex, a separate subunit of which has been 
shown to cause neurodegeneration in mice or humans 
(for example, Atpα). Finally, a fly gene may function in a 
pathway in which another gene is linked to neurodegen-
eration. For example, the fly gene levy encodes a com-
ponent of the COX complex, whereas the products of 
the human genes COX10 and LRPPRC are required for 
proper assembly and expression of this complex, but the 
mutations are functionally equivalent. Taken together, 
55% of the D. melanogaster genes in Supplementary 
information S1 (table) are currently linked to mouse or 
human genes in pathways associated with neurodegen-
eration. There remain fly genes in Supplementary infor-
mation S1 (table) for which, at present, no mammalian 

genes related by sequence or function are associated with 
neurodegeneration. Such genes may have functions in 
maintaining adult brain integrity in mammals that are 
still awaiting discovery.

Open questions. As discussed above, there are prob-
ably many more genes associated with neurodegen-
eration that are not yet identified, and it is likely that 
other processes will be added to the five highlighted in 
this Review. Furthermore, there are a number of issues 
that are yet to be systematically addressed for fly neuro-
degeneration genes. For example, how are the neurons 
dying? Apoptosis is involved in many but not all of the 
degeneration mutants. How widespread is necrotic cell 
loss? Do neurons die because of defective intrinsic proc-
esses or from interactions with aberrant neighbouring 
cells? For widely expressed genes, tools that enable one 
to look at requirements for gene activity in glia or in 
specific neurons are available and might answer the last 
question: RNAi can be restricted to glia, or to small sub-
sets of neurons80. In addition, genetically mosaic flies can 
be analysed with marked mutant clones as small as a 
single cell81. what types of neurons are dying? For the 
most part this question has been addressed only for can-
didate genes for Parkinson’s disease. Cell type-specific or 
brain structure-specific markers combined with confo-
cal microscopy and three-dimensional reconstruction 
are likely to become more prevalent in the study of brain 
degeneration; commonly used histological techniques 
(BOX 2) currently cannot differentiate between affected 
neuronal types. Finally, in humans, age is the single larg-
est risk factor for diseases such as Parkinson’s disease 
and Alzheimer’s disease. A challenge for the future will 
be to use the advantages of the fly to tease apart the role 
of ageing in neurodegeneration.

Although an excellent system for investigating neu-
rodegenerative disease, flies are not humans. They lack 
an adaptive immune system, for example, although flies 
will allow detailed study of the role of innate immunity. 
However, striking similarities between fly and human 
nervous systems mean that studies in flies and mammals 
complement each other well. Moreover, identification 
of genes and pathways that are crucial for brain mainte-
nance is straightforward in the fly and serves as a spring-
board for further investigation in mice and humans. 
Manipulation of such pathways in the fly enhances 
approaches to human diseases that are associated with 
loss of brain integrity and cognitive function.
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Following the sequencing of the human and mouse 
genomes, in 2001 the International Mammalian Genome 
Society (IMGS) declared the systematic mutagenesis of 
every mouse gene as a key challenge for the subsequent 
decade of functional genetic research1. Since then, the 
generation of the first complete map of gene functions 
for a mammalian genome has been progressing rapidly2,3. 
Currently, we estimate that approximately half of all 
mouse genes have been mutagenized, and correspond-
ing lines established. If the resources stored in freezers 
are also included, most mouse genes have already been 
hit by one or more mutations, although many of these 
mutations need to be identified or transferred to a living 
mouse line.

However, to maximize the potential of the mouse 
as a model organism for human diseases and basic 
research, we now face challenges that go beyond sim-
ply establishing a mutant line for every gene. The 
focus of genetic research for the next generation of 
mouse models can be considered at three main lev-
els: the genotype, the phenotype and what we term the  
envirotype (FIG. 1).

In terms of genotype, single engineered alleles are 
analysed in the context of inbred strains in most cases. 
This strategy has been valuable but does not take into 
account the specific alleles that underlie most human 
diseases or the effects of genetic background. Taking 
full advantage of existing resources that more closely 
resemble common human genetic variation will be par-
ticularly important in this respect. From the phenotypic 
point of view, mutant mouse lines have historically 

been generated to analyse specific pathways or biologi-
cal processes. Although this approach has been and will 
be fruitful, the pleiotropic nature of gene functions has 
largely been disregarded. Therefore, two aspects of phe-
notyping are important in the context of maximizing 
the potential of the mouse as a model: systematic phe-
notyping to analyse all existing mutant mouse lines, and 
systemic phenotyping to examine all organs and study 
pleiotropic gene functions. The recent establishment 
of phenotyping centres that carry out such systematic 
and systemic phenotyping is a first step towards achiev-
ing these goals, although the efficiency and integration 
of these efforts needs to be improved. Finally, mutant 
mice are generally housed in standardized conditions. 
However, in addition to endogenous factors, external 
environmental factors are also major triggers for many 
human diseases. We have adopted the term envirotype 
from ecosystems research4, and argue that the incorpo-
ration of envirotypes into experimental designs will be 
essential for accurately modelling human diseases in  
the mouse.

In this Review, we will discuss the important issues at 
the genotype, phenotype and envirotype levels that need 
to be addressed to develop improved mouse models. 
We describe both the existing and ongoing strategies for 
meeting these challenges, as well as highlighting the key 
areas of this field that need to be addressed in the future. 
We also discuss related issues, such as approaches for 
humanizing mouse models and archiving mutant 
mouse lines, which should be considered for the next 
generation of mouse models.
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Genotype
A description of the 
endogenous genetic 
information carried by an 
organism, as distinguished 
from its physical appearance 
(its phenotype) and external 
environmental factors (its 
envirotype).

Towards better mouse models: 
enhanced genotypes, systemic 
phenotyping and envirotype modelling
Johannes Beckers*‡, Wolfgang Wurst‡§ and Martin Hrabé de Angelis*‡

Abstract | The mouse is the leading mammalian model organism for basic genetic research 
and for studying human diseases. Coordinated international projects are currently in 
progress to generate a comprehensive map of mouse gene functions — the first for any 
mammalian genome. There are still many challenges ahead to maximize the value of the 
mouse as a model, particularly for human disease. These involve generating mice that are 
better models of human diseases at the genotypic level, systemic (assessing all organ 
systems) and systematic (analysing all mouse lines) phenotyping of existing and new mouse 
mutant resources, and assessing the effects of the environment on phenotypes.
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Phenotype
Expression of traits

• Hypothesis generation: systemic and
systematic phenotyping
• Standardization and improvement of screen
• Technological advances, for example, imaging

Genotype
Endogenous factors

• Mapping of functions
• Polygenic traits and genetic diversity
• Humanization of molecular networks
• Archiving and dissemination

Envirotype
Exogenous factors

• Mapping and definition of 
environmental factors
• Relating mouse and human envirotypes
• Comparing effects of envirotypes 

in mice and humans
• Modelling complex envirotypes

Figure 1 | Maximizing the potential of the mouse as a model organism. Overview of 
some of the major challenges in maximizing the use of the mouse as a model system  
in the areas of phenotyping, modelling envirotypes and generating genotypes. It is 
important to consider the various aspects of modelling in each of these three areas, 
and to appreciate the interdependent relationships between them.

Phenotype
A description of any 
observable (macroscopic, 
microscopic or molecular) trait 
of an individual with respect to 
some inherited characteristic.

Envirotype
A description of factors that 
are exogenous to the organism. 
The environmental code and 
the genetic code together 
affect the phenotype.

Pleiotropic
A situation in which a single 
gene has an effect on two or 
more distinct phenotypic 
characters.

Transposon
A type of mobile genetic 
element that consists of DNA 
that can move to new genomic 
locations conservatively 
(without replicating itself) or 
replicatively (by moving a copy 
of itself).

QTL
Genetic locus or chromosomal 
region that contributes to  
the variability in complex 
quantitative traits (such as 
body weight), as identified by 
statistical analysis. Quantitative 
traits are typically affected by 
several genes and by the 
environment.

Generation of mouse genotypes
The current status of mouse mutagenesis. To determine 
where we are in the effort to functionally annotate the 
mouse genome, we first summarize the databases of 
mutant resources and international initiatives that work 
towards the goals of the IMGS. The Mouse Genome 
Database (MGD) currently contains more than 21,000 
phenotypic alleles in over 14,000 genes and markers5. 
This public resource continues to grow as a result of the 
combined efforts of large international consortia as well 
as specialized laboratories. The numbers include: spon-
taneous mutations; chemically, radiation- and transposon-
induced mutations; transgenic mouse lines; and mutant 
mouse lines that were produced by gene trap insertion or 
homologous recombination in embryonic stem cells6,7. 
These numbers do not include ~8,000 phenotypic alleles 
of almost 4,000 QTLs, for most of which the underlying 
genetic variant still needs to be identified5. As recently 
generated and unpublished mutant mice are generally not 
yet included in the databases the true number of existing 
mutant mouse lines is much higher. Currently, large-scale 
efforts are underway to fully saturate the mouse genome 
with mutations8. The uS-based Knockout Mouse Project 
(KoMP) and Texas A&M Institute of Genomic Medicine 
(TIGM), the european Conditional Mouse Mutagenesis 
Program (euCoMM) and the north American 
Conditional Mouse Mutagenesis Project (norCoMM) 
in Canada, together aim to generate more than 40,000 
targeted and gene-trapped embryonic stem cell lines9–12. 
By 2010, more than 800 new mouse mutant lines will be 
derived from these embryonic stem cell resources12. It is 
thus feasible that in only a few years each mouse gene will  
be hit by at least one mutation — and this resource  
will be accessible to the scientific community.

Transposons can also be used for efficient random 
mutagenesis in the mouse. They can be used for genotype- 
driven mutagenesis and phenotype-driven mutagenesis.  
With phenotype-driven mutagenesis, the use of 

transposons is advantageous because the site of muta-
genesis can easily be determined. Two major systems 
are currently in use: Sleeping Beauty and piggyBac13–15. 
Current developments that introduce additional genetic 
tools into the transposable Sleeping Beauty element allow 
conditional mobilization of the transgene16.

Alleles relevant to human disease and basic science. The 
various gene targeting and trapping strategies currently 
used are an excellent asset to the functional genomics tool-
box and are important for medical and basic research17. 
However, mutations in humans are not caused by inser-
tions of loxP sites or FRT sites, or by selection markers or 
reporter genes. The next generation of mouse models will 
thus also require mutant alleles that more closely resem-
ble the mutations and genetic variants that are relevant 
to humans. SNPs and copy number variants (Cnvs) are 
important genetic factors in humans that influence quan-
titative traits and contribute to susceptibility or resistance 
to diseases and therapies18–20. Therefore, point mutations21, 
deletions, duplications and translocations of genomic 
regions are of particular interest when generating new 
mouse models. Here, we discuss strategies to maximize 
current N-ethyl-N-nitrosourea (enu) resources that model 
point mutations, and new methods of creating mouse 
lines that are more representative of human disease.

enu is a highly efficient mutagen that is used to gen-
erate random point mutations in mouse spermatogonia22. 
Following mutagenesis, mutant mouse lines can be iden-
tified based on altered phenotypes (phenotype-driven 
enu mutagenesis), a strategy that has been performed 
successfully in several research centres21,23–26. A major 
advantage of phenotype-driven screens is that they start 
with the desired mutant phenotype, which can directly 
be used as a mouse model27,28. However, there has been 
a bottleneck for identifying causative point mutations in 
phenotype-driven enu screens, which involve the time-
consuming and laborious generation of recombination 
events to narrow down the crucial interval containing 
the point mutation. In addition to the establishment of 
large mouse SnP panels for linkage analysis and their 
efficient detection by multiplex mass spectrometry29, the 
recent advent of high-throughput sequencing will help 
to overcome this problem. The crucial genomic interval 
containing the enu mutation can be narrowed down to 
the range of megabase pairs using recombination events, 
and candidates for the mutated gene may then be iden-
tified by sequencing this interval. Mass spectrometry 
for SnP detection and high-throughput sequencing are 
now standard in laboratories that are equipped with the  
corresponding infrastructures.

More recently, enu mutagenesis in mice has also 
been used in approaches that aim to identify mutations in 
a particular gene, followed by the subsequent generation 
and phenotypic analysis of the corresponding mutant 
mouse line. Such genotype-driven screens require the 
establishment of large parallel archives of sperm and 
genomic DnA from G1 animals (the first generation 
offspring from enu-injected male mice). It has previ-
ously been calculated that an archive size of 10,000 enu 
mutagenized G1 animals is sufficient to give an 80% 
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Genotype-driven 
mutagenesis
A reverse genetic approach 
that starts with the targeted 
mutagenesis of a known gene 
or marker sequence. The  
gene targeting is followed by  
the analysis of the mutant 
phenotype. This approach  
is generally based on a 
hypothesis about a potential 
function of the mutated gene.

Phenotype-driven 
mutagenesis
A forward genetic approach 
that starts with the 
identification of a mutant 
phenotype caused by a 
random mutation in the 
genome. The identification of 
the mutated gene or marker  
is subsequent to the 
identification of the mutant 
mouse line. This approach 
makes no assumption of which 
genes may underlie a disease.

SNP
A type of polymorphism in 
which genomic segments  
differ by a single base pair.

Copy number variant
A type of polymorphism in 
which a segment of genomic 
DNA is present at a different 
copy number with respect  
to a reference genome.

N-ethyl-N-nitrosourea
A chemical mutagen that 
introduces point mutations  
in spermatogonia  
of male mice with high 
efficiency. It can be used as a 
mutagen in gene-driven and 
phenotype-driven mutagenesis.

Zinc-finger nuclease
Synthetic protein composed  
of a nonspecific DNA-cleaving 
domain and a highly specific 
DNA-binding domain, which 
comprises a string of 
zinc-finger motifs. Zinc-finger 
nucleases and subsequent 
DNA repair by homologous 
recombination can be used  
to mutagenize genes.

Off-target effect
These effects may compromise 
the specificity of RNAi and  
can occur if there is sequence 
identity between the small 
interfering RNA and random 
mRNA transcripts, causing 
knockdown of the expression 
of non-targeted genes.

probability of identifying five or more mutations in an 
average sized gene, and a 99% probability of identifying 
two or more mutations30–32. As there are currently sev-
eral parallel sperm and genome archives (for example, at 
the RIKen BioResource Center, the Helmholtz Centre 
Munich, and the Mary lyon Centre) from over 45,000 G1 
enu-treated mice, and because each enu-mutagenized 
mouse sperm is expected to carry 1,000 to 3,000 point 
mutations30,33,34, it is feasible that our current resources 
already contain point mutations and allelic series for 
most or all genes. However, these resources have not been 
systematically exploited.

In current approaches, the archives are queried 
for mutations in selected genes that are requested 
by researchers. When the costs for next-generation 
sequencing decrease significantly, which is expected, it 
will become feasible to maximize the potential of these 
rich resources by systematically and fully sequencing 
entire genomes in these archives. This would not only 
allow the isolation of mutations in coding sequences, but 
could result in a map of millions of point mutations — 
including those in non-coding conserved sequences or 
regulatory regions35,36 — from which researchers could 
select the allele or allelic series of their choice. But there 
is currently no concerted international effort to utilize 
the capacities of these combined enu mutagenized 
genomes and sperm archives. Although the genome-wide 
approach would be the most desirable, one alternative 
and cheaper strategy would be to systematically sequence 
the transcriptomes of the enu archives to identify alter-
native transcripts, non-silent mutations in coding regions 
and mutations in non-coding RnAs. However, although 
this would reduce the sequencing efforts to a few percent 
of the entire genome, it would only give a snapshot of the 
transcriptome of one tissue at one time point. If similar 
projects are publicly funded, the data from mutated tran-
scripts and mutant mouse lines should be made available 
as a community resource.

Mutations that affect the copy numbers of chromo-
somal segments are also important in human disease. 
engineered deletions, duplications, inversions or translo-
cations that resemble mutations found in human disorders 
can be constructed using targeted meiotic recombination 
at loxP or FRT sites37. Such chromosome engineering has 
been used successfully in targeted approaches; for exam-
ple, to generate mice that are trisomic or monosomic for 
a chromosomal segment that is orthologous to a region 
of human chromosome 21 that is associated with Down’s 
syndrome38. This approach has also been instrumental for 
the study of gene regulatory mechanisms — for example, 
during embryonic development37,39. By contrast, system-
atic approaches for genome-wide screens using chromo-
somal engineering are probably not appropriate as many 
such mutations might be lethal. However, the technol-
ogy may be particularly useful in modelling Cnvs using  
targeted recombination approaches.

More recent technological developments such as the 
experimental use of RnA-induced silencing (through 
RnAi)40–42 and designed zinc-finger nucleases (ZFns) for 
mutagenesis43–45 contribute to the variety of alleles that 
may be more relevant for human genotypes46.

The experimental application of RnAi requires expres-
sion of particular forms of dsRnAs, such as small inter-
fering RnAs (siRnAs) or short hairpin RnAs (shRnAs), 
which function by cleaving, destabilizing or blocking 
translation of their target mRnAs. In mice, this technol-
ogy offers a rapid and easy method to knock down the 
expression of target genes. In contrast to the complete loss-
of-function mutations in knockout mice, RnAi reduces 
the expression of the target gene — in many cases this 
situation may be more closely related to human disease. In 
addition, the generation of mutants with multiple knocked 
down genes can be simplified by simultaneously express-
ing shRnAs for multiple target mRnAs47. The targeting of 
shRnAs to the mouse genome can be designed such that 
experimental RnAi is performed in large-scale screening 
approaches. However, genome-wide RnAi approaches 
have, so far, been limited to in vitro screens in mamma-
lian cells and in vivo screens in mosaic mouse models to 
identify new tumour suppressor genes48. A recent advance 
of the method was provided by the efficient targeting of 
shRnA vectors to the Rosa26 locus49. This strategy allows 
the efficient selection of targeting events and the stable 
expression of shRnAs targeted against other mouse genes 
from the Rosa26 locus, and conditional induction of RnAi 
in a tissue- and time-dependent manner using Cre/loxP-
mediated activation. An important potential problem 
of RnAi is the occurrence of off-target effects50. In addi-
tion to experimental replication with different shRnAs,  
methods to reduce off-target effects include simultane-
ously expressing multiple shRnAs for a single target  
at low levels, leading to an additive effect on the  
target mRnA but minimal effects on off-target mRnAs.

In addition to homologous recombination in mouse 
embryonic stem cells, targeted and direct manipulation of 
genomic sequences in mammalian cells has been achieved 
by expressing ‘designer’ ZFns46. ZFns can be engineered 
to target specific 18-bp sequences in the genome, where 
they induce double-stranded breaks. Cells repair these 
breaks by non-homologous end joining, which is error 
prone and frequently results in base deletion or addition. 
In contrast to several existing methods for homologous 
recombination in mammalian cells, designer ZFns can 
be used to permanently disrupt reading frames without 
introducing loxP or FRT sites46. However, off-target cleav-
age has been observed for ZFns, which can generate unde-
sired mutations51. In addition to addressing these issues, it 
needs to be demonstrated that ZFn-mediated mutagen-
esis has significant advantages over homologous recom-
bination in the speed or efficiency of generating targeted 
mutant mouse lines. However, this method also makes 
it possible to use alternative methods to generate animal 
models in non-mouse species in which homologous  
recombination in embryonic stem cells is not possible52.

Modelling polygenic traits and genetic diversity. Most 
human disorders are not monogenic and many recent 
human studies have focused on studying complex traits 
that are the result of a combination of many different 
alleles. In mouse models we have tended to eliminate 
the effect of genetic diversity by working with mouse 
inbred strains. The next generation of mouse models 
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Redundancy
When two genes can fulfil an 
equivalent function. Because 
gene functions are frequently 
pleiotropic, redundancy is 
often partial, with two genes 
having overlapping rather than 
equivalent functions.

Epistasis
The interaction between 
different genes that affect the 
same trait. Epistasis takes 
place when the phenotype of 
one genetic allele (mutant or 
natural variant) is modified by 
one or several other genes 
(also called modifier genes), 
such that the joint phenotype 
differs from the one that would 
be produced if the two genes 
were acting independently.

Sensitized mutagenesis 
screen
A phenotype-driven 
mutagenesis screen in which 
mice carrying a targeted 
mutation are bred with 
N-ethyl-N-nitrosourea-treated 
males in order to provide a 
sensitized system for detecting 
dominant modifier mutations.

Consomic
Describes a mouse strain that 
is produced by a breeding 
strategy in which recombinants 
between two inbred strains are 
backcrossed to produce a 
strain that carries a single 
chromosome from one strain 
on the genetic background of 
the other.

Congenic
Describes a mouse strain that 
is produced by a breeding 
strategy in which recombinants 
between two inbred strains  
are backcrossed to produce a 
strain that carries a single 
genomic segment from  
one strain on the genetic 
background of the other.

will need to improve the modelling of polygenic traits 
and genetic diversity to provide more accurate models 
of human disease.

The simplest way to dissect genetic interactions is by 
combining independently targeted alleles, which can be 
used to analyse redundancy and epistasis. More recently, 
gene targeting and enu mutagenesis have been com-
bined to identify modifier loci of mutant phenotypes in 
sensitized mutagenesis screens53,54. For example, new alle-
les interacting with the Delta–notch signalling pathway 
were recently identified in a sensitized enu mutagenesis 
screen on a delta-like 1 mutant background55. Because 
sensitized screens use the same strategy as phenotype-
driven enu mutagenesis screens, they could also be 
performed in large-scale settings.

Many studies have shown that one mutation can have 
distinct phenotypes when analysed on different genetic 
backgrounds. This is due to the presence of different 
alleles at modifying loci in various inbred strains56,57. 
To support identification of such loci, genetic diversity 
can be increased by generating inbred strains that har-
bour chromosomal segments or an entire chromosome 
transferred from a second inbred strain. Single chromo-
some substitution (consomic) strains and chromosomal 
segment substitution (congenic) strains make the study 
of complex traits more efficient58–60 and enable identi-
fication of the alleles that are the basis of the observed 
variability between the two original inbred strains. The 
first full set of 21 chromosome substitution strains 
was generated less than a decade ago61 and, since then, 
these strains have been used to identify several QTls 
related to human multigenic disorders62,63, such as the  
insulin-dependent diabetes 4 (Idd4) and Idd5 loci64–66.

However, there is evidence that the epistasis that 
occurs between QTls is not simple or additive67. Instead, 
the traits are highly polygenic with several modifier loci 
per chromosome, and individual modifiers have pro-
found effects on quantitative traits such that the sum of 
effects is larger than the difference between the parental 
strains. The finding that epistasis is strong and pervasive 
suggests that it will be important to take different genetic 
interactions into account when analysing complex traits. 
It would be particularly interesting to analyse how the 
different QTls analysed in the cited study affect the net-
work of co-expressed genes, and how these in turn cause 
variations in the analysed quantitative traits. Similarly, 
a previous study showed that genome-wide expression 
analysis allowed the identification of the functional gene 
regulation underlying QTls68.

To further explore the effect of genetic diversity on 
phenotypic variation, in 2004 the International Complex 
Trait Consortium embarked on the generation of 
approximately 1,000 recombinant inbred lines derived 
from 8 founder strains in the so-called Collaborative 
Cross69. In the second phase the mice are currently 
being inbred for 23 generations to achieve 99% inbreed-
ing70,71. It is estimated that each Collaborative Cross 
strain will capture approximately 135 unique recombi-
nation events. In this resource of inbred lines, the genetic 
diversity between each Collaborative Cross line will be 
closer to the genetic variety among humans, and it is 

expected that this resource will be an important tool for  
quantitative trait analysis and systems biology.

Archiving and dissemination of mouse models
Coordinated initiatives for the preservation and distri-
bution of mouse strains are required and already exist. 
A major aim is to ensure that the mutant mouse lines 
generated today are still available to the scientific com-
munity in the future. Thus, the dedicated mutant mouse 
archives cryopreserve mouse lines and distribute them 
as live stocks or frozen germ cells to the scientific com-
munity. As sending live stocks is generally more expen-
sive than sending cryopreserved germ cells or embryos, 
teaching the methods for archiving and re-deriving 
mouse lines from frozen stocks is an important aim of 
organizations that are responsible for archiving mutant 
mice. These initiatives are assembled worldwide under 
the umbrella of the Federation of International Mouse 
Resources (FIMRe)72.

Humanization of selected pathways and organs
Although the mouse has been a useful mammalian model 
system, in particular for basic research, it has inherent 
limitations. The lack of basic knowledge on molecular 
mechanisms that underlie human diseases is a major gap 
that needs to be filled for the next generation of medicine. 
Several research approaches aim for humanization of the 
mouse model to overcome at least some of these inher-
ent limitations. Two of the most essential differences 
between mice and humans are that mice are small and 
have a short life cycle (from the view of experimenters, 
these characteristics are regarded as advantages rather 
than limitations). As a consequence, thermoregulation in 
mice and humans is under different constraints owing to 
different surface to volume ratios. The requirements for 
processes such as mutation repair or stress response differ 
in many aspects in an animal with a life span of 2 years 
compared with the requirements in humans, who have a 
life expectancy of ~70 years. The examples of mutation 
repair and stress response show how fundamental some 
of the differences between both species are. A systematic 
comparison of the similarities and differences between 
mice and humans at all developmental stages, and for all 
organ functions and molecular networks, has not yet been 
performed, but is urgently needed for the next generation 
of mouse models73. Some major differences have already 
been recognized — for example, differences concerning 
the immune system74 — and are currently being tackled 
with advanced technologies to humanize the mouse for 
selected biological processes.

The detailed comparison of biochemical pathways or 
molecular networks in specific cases has already revealed 
differences between mice and humans. Such a compari-
son may be based on knowledge about mechanisms of 
disease or on more general biological processes, which 
can then be used for targeted genetic engineering to 
specifically humanize mouse models. For example, the 
human autoimmune disease bullous pemphigoid was 
reproduced in a genetically engineered mouse model in 
which the coding sequence of the autoantigen collagen 17  
(COL17) was humanized75. For this, Col17 knockout 
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 Box 1 | Characterization of primary, secondary and tertiary screens

Primary screen
•	Basic	parameters	to	reveal	traits	of	interest

•	Systemic	analysis	covering	all	organs

•	Non-invasive

•	Efficient	analysis	of	a	large	number	of	animals

•	Power	calculation	based	on	the	numbers	of	animals	required	per	screen

•	Examples	include	dysmorphological	analysis	(such	as	external	observation	and	the	
click	box	test),	X-ray	analysis	and	bone	densitometry

secondary screen
•	Used	for	validation

•	More	detailed	analysis

•	May	be	performed	on	smaller	numbers	of	animals

•	More	time	and	more	expensive

•	Examples	include	peripheral	quantitative	computed	tomography,	micro-computed	
tomography,	markers	of	bone	metabolism	and	hormonal	regulation,	mechanical	
bending	of	long	bones	and	complete	skeleton	preparation

tertiary screen
•	In-depth	analysis	with	selected	animals

•	Invasive	methods	—	for	example,	telemetry

•	Specifically	designed	for	the	experimental	question

•	One	example	is	advanced	bioimaging

mice were rescued by crossing them with a transgenic 
line expressing human COL17 under the control of the 
human keratin 14 promoter.

Another strategy for generating humanized mouse 
models involves engrafting human cells into immune-
compromised mice, which is a widely accepted method for  
generating metabolic models, for toxicity testing and 
for humanization of the immune system. For example, 
genetically modified mice were used to transplant human 
CD34+ cord blood cells into mice, where they then 
develop into human B, T and dendritic cells76. This model 
has been used to study the pathobiology of epstein–Barr 
virus77 or HIv-1 (REF. 78) infection. orthotopic xenografts 
have been applied in mice to study human breast neo-
plastic development79. As for genetic humanization, 
humanization by cell grafting may be applied to specific 
diseases on the basis of prior knowledge, and is probably 
not yet applicable to large-scale studies.

Phenotyping mouse models
To make mouse models more valuable for the scientific 
community, a major goal is to annotate existing and new 
mouse models with comprehensive phenotyping data to 
reveal affected organ systems80. This systemic phenotyp-
ing is essential to distinguish between the primary and 
secondary effects of genetic changes. In the past, many 
scientists focused on specific phenotypes and may have 
missed phenotypes outside of their interest and expertise. 
Systematic phenotyping will also be necessary to analyse 
the phenotypes of all available mouse models.

Systemic phenotyping and pleiotropic gene functions. 
For several reasons systemic phenotyping is an impor-
tant aspect of large-scale mutagenesis programmes and 

specialized laboratories. A comprehensive phenotypic 
description makes new mutant mouse lines more valuable 
for basic and medical research. It also generates scientific 
interest into specific mutant mouse lines (through the 
generation of hypotheses) for subsequent more focused 
research to find mechanistic explanations. The primary 
screens should be designed to provide an overview of 
affected organs and, as such, should cover general phe-
notypic parameters of all organs (see BOX 1 for definitions 
of primary, secondary and tertiary screens).

Previously, mutant mouse line analyses were per-
formed mostly in specialized laboratories, often using 
protocols that were not standardized between different 
institutions. The mouse phenotyping centres brought 
the expertise of phenotyping specialists together and 
established standardized protocols that are validated 
in different and geographically separated laboratories. 
one of the products of the european consortium, called 
euMoRPHIA (european union Mouse Research for 
Public Health and Industrial Applications), is the first 
standard set of phenotyping protocols that were vali-
dated across several laboratories. A limited number of 
these phenotyping standard operating protocols form the 
eMPReSS (european Mouse Phenotyping Resource for 
Standardized Screens) slim primary phenotyping screen, 
which was developed to form a coherent sequence of tests 
to fully characterize a mutant mouse line81–83 and is the 
minimal standard set of tests that are performed in all 
european mouse clinics. These tests include: screens 
for changes in morphology, metabolism, neurology and 
behaviour; screens for changes in the cardiovascular 
system, bones and sensory organs; measuring haemato-
logical parameters and clinical chemical parameters; and 
assessing indicators of allergy and the immune system 
in blood and serum. All eMPReSS slim protocols and 
additional validated phenotyping procedures are freely 
available from the eMPReSS website (see the further 
information box). The primary screening is designed as 
an entry point for further phenotypic analyses that aim to 
explain the underlying mechanisms of the phenotypes.

unbiased screens, such as transcriptomics or pro-
teomics profiling approaches, would be an ideal asset to 
systemic phenotyping protocols84. expression profiling 
screens may be used to identify affected organs and to 
help classify mutant phenotypes that might otherwise have 
been regarded as identical. However, systematic expres-
sion profiling screens have generally not been included 
in primary phenotype screens, possibly owing to cost. 
The associated bottlenecks here include the systematic 
collection of organs from at least five individual mice for 
statistical significance, and the high prices of microarrays 
 and molecular reagents to analyse each collected organ.

nevertheless, gene expression screens can be per-
formed at least as efficiently as other screens in the context 
of systemic phenotyping infrastructures. one possible 
strategy is to obtain a large panel of organs from each 
mouse line and select organs for transcript profiling on 
the basis of either previous knowledge (of gene function, 
spatiotemporal gene expression and so on) or pheno-
type data from other primary phenotype screens. In one 
study, this strategy revealed molecular gene expression 
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Figure 2 | scheme of the primary phenotyping protocol of the German Mouse clinic (GMc). This scheme 
includes the EMPReSS slim primary phenotyping protocol, which is a common standard of European mouse clinics. 
Screens such as molecular phenotyping, lung function, steroid metabolism and pathological screens are performed in 
addition to the EMPReSS slim protocol. The GMC primary phenotyping screen starts 2 weeks after the mutant mouse 
lines are imported at the age of 9 weeks. For phenotypic analysis, the mice are distributed into one of two pipelines,  
in which they are subjected to a defined series of tests. The primary screen ends at the age of 18 weeks. Based on the 
results of the screens, decisions for secondary and tertiary screens are made. ANP, atrial natriuretic peptide; DEXA, 
dual-energy X-ray absorption; DHEA, dehydroepiandrosterone; ECG, electrocardiogram; FACS, fluorescence- 
activated cell sorting; IPGTT, intraperitoneal glucose tolerance test; LIB, laser interference biometry; PBC, peripheral 
blood cell; PPI, pre-pulse inhibition; SHIRPA, a protocol for comprehensive behaviour assessment. Figure is modified, 
with permission, from REF. 111  Humana Press (2009).

phenotypes in approximately 50% of the analysed mutant 
lines85. In terms of the frequency of phenotype identifica-
tion per mutant mouse line, gene expression screens are 
among the most efficient screens and they can be indis-
pensable for unravelling subtle molecular mechanisms 
that underlie mutant phenotypes in mice. For example, 
despite extensive previous phenotypic analyses, it was 
only possible to identify the physiological function of 
a membrane transporter in renal epithelial cells by a 
genome-wide transcriptomics approach combined with 
proteomics and metabolomics86.

Recent technological advances allow us to analyse 
more mutant phenotypes and extend the range of pheno-
types that can be examined. For example, there has been 
tremendous progress in the use of microscopic and opti-
cal methods for the non-invasive analysis of anatomical, 
functional and molecular parameters in small rodents87. 
Technical improvements in resolution and specificity 
have allowed clinical imaging technologies, such as X-ray 

tomography, magnetic resonance imaging, nuclear imag-
ing approaches and ultrasound imaging, to be adapted 
for use in small animals. Transgenically expressed genes 
that are tagged using fluorescence or bioluminescence 
can be monitored non-invasively in vivo throughout 
the entire mouse body88. The major advantages of these 
imaging methods include in vivo monitoring of thera-
peutic interventions and the longitudinal observation of 
a single animal using repeated observations. A recent and 
promising technological development combines optical 
imaging with other modalities, such as ultrasound, X-ray 
and magnetic resonance imaging. We foresee that at least 
some of these imaging technologies will become more 
common for phenotyping mouse models and in a few 
years may be included in standard protocols of mouse 
clinics. For example, X-ray computed tomography and 
high-frequency ultrasound biomicroscopy are imaging 
methods that are already included in the phenotyping 
protocols of the German Mouse Clinic (GMC).
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96% of mutant mouse lines with new phenotypes

100

(6,000 mice)Mutant lines completed
primary screen

68
Lines with previously 
known phenotypes

32
No phenotype known 
before

Lines with new phenotypes No phenotypes detected
68 + 28 = 96 4

Figure 3 | Frequency of new mutant phenotypes 
detected in mutant mouse lines analysed in the 
German Mouse clinic (GMc). New phenotypes have been 
identified in 96% of all mutant mouse lines that have  
been analysed in the GMC primary screen. Approximately 
two-thirds of the mutant mouse lines submitted to the 
GMC had known mutant phenotypes before the GMC 
primary screen. One-third of mutant mouse lines were 
submitted without any known mutant phenotype.

An example of a successful set-up for systemic phe-
notyping comes from the GMC, which was the first  
phenotyping centre dedicated to the systemic and system-
atic analysis of mutant mouse lines and which performs 
one of the most comprehensive screens80 (FIG. 2). The 
GMC has so far systemically analysed over 100 mutant 
mouse lines (over 6,000 mice) and has identified new 
and unexpected phenotypes in 96% of these mutants89–96 
(FIG. 3). Approximately one-third of these mouse lines 
had no previously described mutant phenotypes. These 
findings suggest that mutant phenotypes have been over-
looked even in mouse models that have been studied for 
many years. These data also imply that in some cases 
the interpretation of mutant phenotypes may have to be 
reconsidered, because what has previously been regarded 
as primary gene function may be a secondary effect. For 
example, the vimentin (Vim) knockout allele was estab-
lished more than a decade ago and extensively analysed. 
Known mutant phenotypes included cerebellar defects, 
impaired motor coordination, abnormal kidneys, delayed 
wound healing and impaired vascular tone97–102. However, 
the GMC systemic primary screen made the novel find-
ing that the vimentin knockout mice are characterized 
by decreased cytotoxic and helper T cell subsets. This 
phenotype may be caused by a possible defect in T cell 
migration and is the basis for several other phenotypic 
alterations in these mutant mice.

Finally, the systemic phenotyping approach is par-
ticularly important to evaluate mutant mouse lines for 
their suitability as models for human diseases. Many of 
the most prevalent human diseases — such as type II dia-
betes, rheumatoid arthritis, neurodegeneration and other 
ageing-related disorders — affect multiple organs. The 
systemic phenotyping of mouse models will allow us to 
find concordances and differences between these human 
disorders and the corresponding mouse models.

Gearing up for systematic phenotyping. A large number 
of genes and markers in the mammalian genome are still 
not functionally annotated through experimental data. 
Thus, mutations in all genes need to be established in 
mutant mouse lines and subsequently phenotyped. This 
is the systematic aspect of systemic phenotyping.

Considering the 20,000 to 25,000 mammalian genes, 
each with one or more mutant alleles, and the number 
of primary phenotypic parameters that can be measured 
(currently between 300 and 400 parameters per mouse 
line) in cohorts of male and female mice, the ques-
tion arises of how an endeavour of such a scope may 
be accomplished. A coordinated community effort is 
undoubtedly required103 and several genomics centres in 
Asia, Australia, Canada, europe and the united States 
have already established individual research infrastruc-
tures for the standardized and thorough phenotyping of 
the mouse mutant resources.

An important systematic phenotyping approach was 
initiated for the commonly used mouse inbred strains104. 
The data of this Mouse Phenome Project105,106 are freely 
accessible from the Mouse Phenome Database107 and are 
voluntarily contributed by researchers all over the globe, 
or in some cases retrieved from open public sources.

In the european Mouse Disease Clinic (euMoDIC) 
consortium, the academic phenotyping centres have 
coordinated their efforts to undertake a primary phe-
notype assessment of the first 500 mutant mouse lines. 
These mutant mice are generated by euCoMM, which 
aims to produce 14,000 conditional mutant mouse alle-
les. The primary phenotyping is based on standardized 
eMPReSS protocols81. To our knowledge this is the only 
international initiative to systematically phenotype 
mouse models using a common standard phenotyping 
protocol. The included screens have been selected to give 
a comprehensive multi-system phenotype of mouse lines 
and are performed on age-matched cohorts of male and 
female mice. The primary mutant phenotype data gen-
erated through the eMPReSS protocols is made acces-
sible in the euroPhenome database and is published in  
peer-reviewed journals83.

An additional challenge associated with systematic 
phenotyping concerns the compatibility and accessibility 
of phenotype data. Mouse phenotype data is still highly 
fragmented into several largely independent databases 
around the world under different standards and in dif-
ferent formats. The academic initiative InterPhenome 
has started to develop standards using ontologies and file 
formats for the description of phenotyping protocols and  
phenotype data sets108. CASIMIR (Coordination  
and Sustainability of International Mouse Informatics 
Resources) is a coordination effort supported by the 
european Commission, which aims to coordinate and 
integrate multiple site databases to address the problem 
of data fragmentation in dispersed databases.

It is evident that the capacities of the current phenotyp-
ing centres are not sufficient to analyse all mutant mouse 
lines that will be produced by the large-scale mutagenesis 
projects in the next decade109. To make significant progress 
their throughput will need to be increased from analysing 
hundreds of mutant lines per year to phenotyping thou-
sands. Although automation may in part contribute to 
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Figure 4 | schematic representation of the five environmental platforms 
currently being established at the German Mouse clinic. The five platforms in the 
blue boxes represent the major interfaces of the organism with the environment 
(gut, lung and skin, brain and sense organs, muscle and bone, and immune system), 
orange boxes give examples of environmental factors in each platform. Different test 
paradigms are currently being evaluated for their applicability and relevance for the 
mouse model system.

increased capacities, additional and larger phenotyping 
centres will be required in the future. The phenotyping 
infrastructures will also need long-term funding to have 
a significant effect on basic research and future medicine. 
In europe, the Infrafrontier consortium is currently in 
the planning phase to reach a european agreement for 
a major upgrade, and for joint construction and imple-
mentation of the required infrastructures for mouse  
phenotyping and archiving of mutant mouse lines.

As the required phenotyping capacities are not yet 
available, one strategy is to prioritize the analysis of 
mutant mouse lines. A consensus of the centres that con-
tribute to large-scale targeting and trapping of mouse 
genes suggested that one null allele of every gene should 
be phenotyped first. Conditional alleles may be given 
priority when knockout alleles are dominant or recessive 
lethal. orthologues of human genes that have already 
been associated with diseases may also be prioritized. 
Genes that are specifically requested from the scien-
tific community for basic research should also be given  
priority for systemic phenotyping.

Modelling envirotypes
Genotype and phenotype is a classical pair in genetic 
research. By contrast, the contribution of external factors 
to shaping the phenotype has been largely disregarded4. 
Similar to the map of genes and markers in the mam-
malian genome and their functional annotations, we will 
also need a map of exogenous factors for the next gen-
eration of mouse models. Sets of exogenous factors can 
then be used to describe and define complex envirotypes 
that may correspond, for example, to different human life 
styles (such as exercise versus resting) or social and geo-
graphical cultures (such as Western versus eastern diet 

or rural versus urban culture). The extent to which the 
effects of particular envirotypes are the same in mice and 
humans remains to be determined. Indeed, most human 
envirotypes are not fully defined. Therefore, the charac-
terization of envirotype–phenotype correlations will also 
be important to further improve the mouse as a model for 
human diseases. experimental settings will be required 
that allow the design of investigational envirotypes that 
can be integrated into or associated with dedicated sys-
temic phenotyping protocols. As an example, the GMC 
has started the implementation of challenging platforms 
that serve exactly these requirements.

The current primary systemic screening protocol 
at the GMC almost exclusively focuses on the analysis 
of mice under resting conditions in a ‘protected’ speci-
fied pathogen-free environment. Therefore, the primary 
screen will preferentially identify alterations involved in 
the homeostatic regulation of basic organ and cell func-
tions and does not take into account the influence of 
external factors. However, some human diseases require 
environmental triggering factors in order to become 
apparent — allergic asthma, for example. Without the 
specific trigger, the individual might be phenotypically 
normal even though it carries genetic variations that 
potentially play a vital part in the pathophysiology of  
the disease. The German Mouse Clinic II (GMC II) is the 
first to set up standardized challenge platforms for mouse 
phenotyping to explore the complex relationship between 
the envirotype, genotype and phenotype. Challenge 
platforms are currently being set up that focus on major 
environmental risk factors for human health. Five areas 
— diet, air, stress, exercise and immunity — were chosen 
that represent the major interfaces of the organism with 
the environment (that is, gut, lung and skin, brain and 
sensory organs, muscle and bone, and immune system) 
(FIG. 4). For the different platforms, defined challenge 
conditions will be implemented for phenotypic analy-
ses, which incorporate the latest bioimaging methods. 
By mimicking specific environmental exposures or life 
styles that have a strong impact on human health, their 
effects on molecular networks and on disease aetiology 
and progression will be determined, thereby uncover-
ing the physiological and molecular mechanisms of  
interactions between the genome and environment.

The combination of exogenous factors might also 
shed light into the crosstalk between environmental chal-
lenges, which is poorly understood. The experimental 
introduction of combinations of challenges and environ-
mental heterogeneity is hoped to provide conditions that 
are more comparable to those that humans experience110. 
envirotypes that are relevant to humans can be designed 
as far as they are characterized and understood. However, 
the differences between mice and humans also have to be 
considered, such as those in olfactory functions, immune 
response and higher brain function. These differences 
might lead to alternative effects of environmental stim-
uli, which lead to different phenotypic manifestations. 
However, comparative analyses at all ‘omics’ levels might 
help to overcome this challenge by providing more pre-
cise classifications at the gene expression level. Finally, 
we note that introducing experimental envirotypes into 
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mouse phenotyping protocols will provide the chance 
to discover interventions or alterations in life style that 
might have positive effects on human health.

The exposure of mouse models to environmental 
challenges is not new. Challenge tests are used widely in 
the research community and have provided important 
results. However, envirotypes are more complex, and they 
need to be defined and introduced into the experimen-
tal set-up. The power of GMC II lies in the combination 
of challenges involving complex environmental condi-
tions (for example, challenging diets and exercise under 
stress conditions). However, combining sets of exogenous  
factors meaningfully and efficiently remains an issue.

Conclusions
The functional study of mammalian biology in mouse 
models faces many important challenges that are of a 

much larger scope than previous genomics projects. 
In terms of genotyping, it is likely that the current 
mouse resources contain mutations for most genes, 
but it will be essential to generate mutant lines that 
more closely resemble human diseases. In addition, 
a systematic comparison of all organ functions and 
molecular networks between humans and mice will 
be essential to better understand and fully exploit the 
power of existing and future mouse models. Another 
major challenge is that more coordination between 
international phenotyping centres will be required in 
order to systemically and systematically phenotype all 
existing mouse models and guarantee accessibility and 
compatibility of phenotype data. Finally, the analysis 
of envirotypes poses a major challenge for the next 
generation of mouse models and is just beginning to 
be addressed.
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FURTHER INFORMATION
Australian Phenomics Facility (APF): http://www.apf.edu.au
CASIMIR: http://www.casimir.org.uk
Charles River’s phenotyping screens, Massachusetts: 
http://www.criver.com/en-US/ProdServ/ByType/Discovery/
Pages/PhenotypingServices.aspx
Comparative Pathology Laboratory (CPL):  
http://www.vetmed.ucdavis.edu/ars/cpl.htm
EMPReSS: http://empress.har.mrc.ac.uk
EUCOMM: http://www.eucomm.org
EUMODIC: http://www.eumodic.org
EUMORPHIA: http://www.eumorphia.org
EuroPhenome: http://www.europhenome.org
FIMRe: http://www.fimre.org
Frimorfo, Switzerland: http://www.frimorfo.com
German Mouse Clinic (GMC): http://www.mouseclinic.de
Helmholtz Centre Munich:  
http://www.helmholtz-muenchen.de/en
IMGS: http://imgs.org
Infrafrontier: http://www.infrafrontier.eu
Institut Clinique de la Souris (ICS):  
http://www-mci.u-strasbg.fr/index.html
InterPhenome: http://www.interphenome.org
Jackson Laboratory Phenotyping Services:  
http://jaxservices.jax.org/phenotyping/index.html
KOMP:  
http://www.nih.gov/science/models/mouse/knockout
Laboratory Animal Sciences Program (LASP):  
http://web.ncifcrf.gov/rtp/lasp/phl
Mammalian Genetics Phenotyping: http://www.gnf.org/
technology/organismal/mammalian-genetics-phenotyping.htm
Mary Lyon Centre: http://www.har.mrc.ac.uk
MGD: http://www.informatics.jax.org
Mouse Genetics Programme — Phenotyping:  
http://www.sanger.ac.uk/Teams/Team109/phenotyping.shtml
Mouse Phenome Database: http://phenome.jax.org/pub-
cgi/phenome/mpdcgi?rtn=docs/home
Mouse Phenotyping Shared Resource (MPSR):  
http://www.vet.ohio-state.edu/255.htm
NorCOMM: http://norcomm.phenogenomics.ca
Phenotyping Core:  
http://www.hopkinsmedicine.org/mcp/PHENOCORE
Research Animal Diagnostic Laboratory (RADIL): 
 http://www.radil.missouri.edu
RIKEN BioResource Center:  
http://www.brc.riken.go.jp/inf/en/index.shtml
Taconic Farms, Inc.:  
http://www.taconic.com/RAS/phenotyping.htm
TIGM: http://www.tigm.org
Toronto Centre for Phenogenomics (TCP):  
http://www.phenogenomics.ca
Unit for Laboratory Animal Medicine:  
http://www.ulam.umich.edu/services/pathcons.htm
Yale University Mouse Research Pathology (YMRP):  
http://mrp.yale.edu/index.html
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Traits that are controlled by a single gene, such as flower 
colour in pea plants, have been important in elucidat-
ing the mechanisms of heredity, yet most traits that are  
important in agriculture, medicine and evolution  
are complex or quantitative traits. These traits include: 
susceptibility to many diseases, such as diabetes in 
humans; agriculturally important traits, such as the milk 
yield of dairy cows; and traits that affect fitness in the 
wild, such as the clutch size of birds.

Identifying genes for complex traits would greatly 
enhance our understanding of these traits, but in domes-
tic animals there would also be a practical benefit to agri-
culture. Traditionally, the genetics of complex traits in 
these species has been studied without identifying the 
genes involved. Selection has been based on estimated 
breeding values calculated from phenotypic records and 
pedigrees, and on knowledge of the heritability of each 
trait. This has been successful, but the process is slow if 
the trait can only be measured in one sex (for example, 
milk yield), after death (for example, meat quality) or 
late in life (for example, longevity), or if measuring the 
trait is expensive (for example, methane production, 
feed requirement or disease resistance). Therefore, to  
improve on these traits, it would be advantageous  
to identify genes for them and select animals carrying 
the desirable alleles1. Thus, compared with research on 
complex traits in humans, there is greater emphasis in 
domesticated animals on predicting genetic merit and 
phenotype and less emphasis on discovering genes  
and pathways. However, both aims are important and are 
covered in this Review.

Over the past 20 years, two approaches have been 
used to discover the genes and polymorphisms contrib-
uting to variation in complex traits. In one approach 
candidate genes have been targeted based on their role 
in the physiology of the trait (for example, the expres-
sion level of milk proteins), and in the other approach 
the genes that affect a trait of interest have been mapped 
to a chromosomal location using genetic markers2–4. 
However, progress in identifying the causal genes for 
complex traits has been slow as linkage mapping results 
in large confidence intervals.

The recent availability of large panels of SNPs in 
domestic species has given new momentum to the 
search for the mutations underlying variation in com-
plex traits through the use of genome-wide association 
(GWA) studies. This Review concentrates on domesti-
cated species, especially those for which the possibility 
of dissecting the architecture of important quantitative 
traits is enhanced by the availability of genome-wide 
SNP panels — these species include cattle, dogs and 
chickens. Genome-wide SNP panels for sheep, pigs  
and horses have also recently become available.

We first discuss the experimental designs, statistical 
analyses and results of this research. GWA studies have 
successfully identified genes causing simple Mendelian 
traits, but these studies have not yet identified genes for 
complex traits. Animal breeders can nevertheless use 
the results of GWA studies for genetic improvement of 
domestic animals by using a technique called genomic 
selection, which potentially leads to large increases in 
the rate of genetic improvement5. Genomic selection is 
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Quantitative trait
A measurable trait that 
depends on the cumulative 
action of many genes and the 
environment, and that can vary 
among individuals over a given 
range to produce a continuous 
distribution of phenotypes.

Estimated breeding value
An estimate of the additive 
genetic merit for a particular 
trait that an individual will pass 
on to its descendents.

Heritability
The proportion of phenotypic 
variance caused by additive 
genetic variation.

Mapping genes for complex traits 
in domestic animals and their use in 
breeding programmes
Michael E. Goddard*‡ and Ben J. Hayes‡

Abstract | Genome-wide panels of SNPs have recently been used in domestic animal 
species to map and identify genes for many traits and to select genetically desirable 
livestock. This has led to the discovery of the causal genes and mutations for several 
single-gene traits but not for complex traits. However, the genetic merit of animals can 
still be estimated by genomic selection, which uses genome-wide SNP panels as 
markers and statistical methods that capture the effects of large numbers of SNPs 
simultaneously. This approach is expected to double the rate of genetic improvement 
per year in many livestock systems.
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Genetic improvement
Deliberate genetic change in a 
population of domestic animals 
or plants brought about by 
human control of their selection 
and breeding that makes them 
more suitable for the purpose 
for which they are kept.

Genomic selection
Selection of animals for 
breeding based on  
estimated breeding values 
calculated from the joint 
effects of genetic markers 
covering the whole genome.

Linkage disequilibrium 
The absence of linkage 
equilibrium so that the allele at 
one locus is correlated with the 
allele at another locus.

Effective population size 
The number of individuals in  
an idealized population with 
random mating and no 
selection that would lead to the 
same rate of inbreeding as 
observed in the real population. 
The effective population size 
can be much less than the 
actual population size owing  
to the unequal genetic 
contribution of individuals to 
the next generation.

Linear model
A statistical model that 
assumes that the observed 
phenotypic value can be 
explained by the sum of the 
effects of independent 
variables and a random error, 
which is usually assumed to  
be normally distributed.

Polygenic breeding value
The additive genetic merit an 
individual passes on to its 
descendents owing to the 
combined contribution of 
many genes of small effect,  
but possibly excluding some 
specified genes.

Admixture
A population or sample of 
individuals derived from more 
than one race or breed and 
that have not undergone 
random mating.

already being used successfully to select dairy cattle car-
rying desirable alleles for milk yield and other traits, and 
is likely to be applied to all livestock in the near future 
as well as to crops and aquaculture. We describe the 
science behind this revolution and, finally, we discuss 
the directions for future research into complex traits in 
domesticated animals.

The history of QTL mapping
In the decades before the advent of GWA studies, genes 
affecting production and fitness traits in domestic ani-
mals were mapped to chromosomal regions using link-
age analysis and linkage disequilibrium (lD) between 
markers and QTls. As we explain below, differences 
between animals and humans in family structure and 
in the extent of lD affected the power and precision of 
mapping in animal studies compared with observations 
in human studies.

Linkage analysis. early attempts to map QTls used 
blood groups as genetic markers6–8. However, the power 
of this approach was markedly enhanced by the identifi-
cation of numerous highly variable microsatellite mark-
ers. Typically, a linkage analysis was performed using 
microsatellite markers, often with large half-sibling 
families9. The ability to generate hundreds of offspring 
per sire made this approach more powerful in livestock 
than in humans. However, linkage analysis usually 
mapped the QTls to a large interval of 20 centimorgans 
(cM) or more4,9, which made it difficult to identify the 
underlying mutation and to use the marker information 
in animal breeding programmes.

LD and the effect of effective population size. More 
precise mapping is possible using lD between markers 
and QTls because lD decays quickly as the distance 
between marker and QTl increases. A linkage analy-
sis uses recombination events in the recorded pedigree 
and traces chromosome segments to a common ances-
tor in the pedigree. By contrast, lD mapping relies on 
chromosome segments inherited from a common ances-
tor before the recorded pedigree — this is because it is 
the inheritance of identical chromosome segments by 
multiple descendents from a common ancestor that 
causes lD.

The pattern of lD observed in a population depends 
on the history of the population, especially the history 
of its effective population size (Ne)

10–12. A small Ne means 
that alleles in the current population coalesce in a com-
mon ancestor in a small number of generations. This 
means that there are few generations of recombination; 
the chromosome segments that are identical by descent 
are large, and so lD extends for a long distance. This 
explanation assumes a constant Ne but, in practice, the 
Ne of a population can change over time. For instance, 
in Bos taurus cattle Ne was large before domestication 
(>50,000), declined to 1,000–2,000 after domestication 
and, in many breeds, declined to approximately 100 
after breed formation13,14. This causes some lD to exist 
at long distances (>1 cM) but not to increase markedly 
until very short distances are reached13. However, the 

long-range lD does not apply across breeds because 
animals from different breeds do not share a recent 
common ancestor. This Ne history is similar to that 
experienced by dogs, which show a similar pattern of 
lD to cattle15, but is the opposite of that experienced by 
humans. The european human Ne was only ~3,000 but 
then increased enormously in the last 10,000 years12 
(FIG. 1). Consequently, humans have similar lD to cattle 
at short distances but almost no lD at long distances  
(FIG. 2a).

This pattern of lD in domestic animals means that 
a marker may be in lD with a QTl some distance away 
and hence show an association with the trait affected 
by the QTl. Consequently, one does not need as dense 
a panel of SNPs for a GWA study in many domestic 
animal species as in humans. Conversely, markers that 
are located several centimorgans from the QTl can 
show an association to the trait, making precise map-
ping more difficult. This problem can be overcome by 
using multiple breeds: markers that show a consistent 
pattern of lD with a QTl across breeds must be close 
to that QTl (FIG. 2b).

The traditional mapping strategy was to use linkage 
to map a QTl to a large region and then use lD to map 
it more precisely. However, discovering and typing a 
panel of dense markers across the confidence interval of 
a single QTl was a major undertaking until the arrival 
of genome-wide panels of SNPs.

GWA studies
Principles and tools. The basic design of a GWA study is 
that a sample of animals are recorded for a trait of inter-
est and assayed for a genome-wide panel of markers to 
detect statistical associations between the trait and any 
of the markers. Design parameters include the choice 
and number of animals and markers. Most commonly, 
the data from a GWA study are analysed one SNP at a 
time using a simple linear model that includes: the effect 
of a SNP; fixed effects, such as the cohort or group to 
which the animal belongs; and the polygenic breeding 
value of each animal, which is due to all other genes 
affecting the trait.

The genomic sequence is available for several 
domestic species, including cattle, horses, chickens and 
dogs, and large numbers of SNPs were discovered as a 
by-product of the sequencing or in subsequent rese-
quencing. These SNPs can be typed using the same tech-
nology as in humans, and commercial ‘SNP chips’ exist 
for cattle (50,000 SNPs), dogs (22,362 SNPs; Illumina 
CanineSNP20 BeadChip), sheep (56,000 SNPs), pigs 
(60,000 SNPs; Illumina PorcineSNP60 BeadChip), horses 
(54,602 SNPs; Illimina equineSNP50 BeadChip) and 
chickens. However, these chips contain less SNPs than 
the latest human SNP chips with over 1,000,000 SNPs.

Sources of bias. An important source of false positive 
associations is admixture in the sample of individuals 
used. The most obvious case of this problem would be 
a sample consisting of a mixture of breeds. Fortunately 
this problem is easily avoided by including breed (if 
known) in the statistical model used to analyse the data. 

R E V I E W S

382 | juNe 2009 | vOluMe 10  www.nature.com/reviews/genetics

© 2009 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Genetics

a

1 10 100 1,000

Number of generations in past

10,000 100,000 1,000,000

Es
tim

at
ed

 e
ff

ec
tiv

e 
po

pu
la

tio
n 

siz
e

10

100

1,000

10,000

100,000

b

1,000,000

HF_NLD
HF_AUS
HF_NZL

RW_NLD
ANG_AUS
JER_NZL

Ancestral
Bos indicus

Aurochs (extinct 
ancestor of 
modern cattle)

Ancestral
Bos taurus

Figure 1 | Key events in the history of cattle. a | Approximately 1 million years ago, the Bos genus diverged from  
other Bovidae. Between 1,000,000 and 500,000 years ago, the Bos taurus species and Bos indicus species diverged. 
Approximately 10,000 years ago, both species were domesticated. 400 to 100 years ago, deliberate breed formation 
began. Recently, the widespread use of artificial insemination has further reduced effective population size in some 
breeds. b | The graph depicts effective population size along the population history, estimated from the average linkage 
disequilibrium at different marker distances, for Dutch black and white Holstein–Friesian bulls (HF_NLD), Dutch red and 
white Holstein–Friesian bulls (RW_NLD), Australian Holstein–Friesian bulls (HF_AUS), Australian Angus cattle (ANG_AUS), 
New Zealand Friesian cows (HF_NZL) and New Zealand Jersey cows (JER_NZL)13. Effective population size was large before 
domestication (>50,000) and declined to 1,000–2,000 after domestication, and then declined again to ~100 owing to 
breed formation and modern breeding programmes. Aurochs image in part a is courtesy of Roberto Fortuna, National 
Museum of Denmark. Part b is modified, with permission, from reF. 13  Genetics Society of America (2008).

A more subtle form of admixture is the existence of 
relationships among the animals. The implication of an 
‘association’ between a marker and a trait is that it exists 
across the whole population, and so specially designed 
mapping families are not needed. In fact, a sample of 
unrelated individuals would be ideal. However, live-
stock are usually bred in half-sibling families (for exam-
ple, cattle) or full-sibling families (for example, pigs). 
Relationships among the animals in the sample cause 

lD between loci even if they are unlinked. For instance, 
if the sire of a family carries rare alleles at two unlinked 
loci, his offspring will be more likely than other ani-
mals to carry both rare alleles. If one of these loci is a 
QTl, this generates an association between the other 
locus and the trait. This problem can be overcome by 
including in the statistical model a term for the effect of 
all other genes affecting the trait (the polygenic term). 
In our experience, omitting the polygenic term in the 
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Figure 2 | Linkage disequilibrium (LD) in cattle breeds. a | Decline of LD with distance between pairs of SNPs as 
measured by LD within breeds of cattle (derived from approximately 35,000 SNPs, and a human population with 
northern and western European ancestry (CEPH cohort))12. b | LD between breeds of cattle. The heat map shows the 
correlation between LD in different breeds for SNPs within 10 kb of each other. For two closely related breeds (Angus 
and Red Angus) the correlation is high, as shown in a hypothetical example in which a–q and A–Q chromosomes are 
common in both breeds (upper box). However, when Angus is compared with Brahman (a distantly related breed) the 
correlation is low and, in the hypothetical example, Brahman chromosomes often carry a–Q, which is a rare haplotype 
in Angus (lower box). In fact, the correlation is low for any combination of a Bos indicus breed and a Bos taurus breed65. 
ANG, Angus; BMA, Beefmaster; BRM, Brahman; BSW, Brown Swiss; CHL, Charolais; GIR, Gir; GNS, Guernsey;  
HFD, Hereford; HOL, Holstein; JER, Jersey; LIM, Limousin; NDA, N’Dama; NEL, Nelore; NRC, Norwegian Red;  
PMT, Piedmontese; RGM, Romagnola; RGU, Red Angus; SGT, Santa Getrudis; SHK, Sheko.  Data for part a is taken from 
reFS 12,65.  Data for part b are courtesy of the Bovine HapMap Consortium. Part a and the heat map in part b are 
modified, with permission, from reF. 65  (2009) American Association for the Advancement of Science.

model approximately doubles the number of false posi-
tive associations (I. Macleod, personal communication). 
Fortunately, the inclusion of a polygenic term in the  
statistical analysis is becoming more common.

Although the inclusion of a polygenic term in the 
statistical model eliminates associations between a QTl 
and markers that are not linked to it, it does not elimi-
nate associations between QTls and linked markers. To 
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LD phase
If linkage disequilibrium (LD) 
exists between genes A and B, 
each with two alleles (A or a 
and B or b), then gametes that 
carry allele A can carry B or b. 
Thus, LD can exist in one of two 
phases: gametes that are more 
commonly AB and ab, or 
gametes that are more 
commonly Ab and aB.

extend the previous example, if a sire carries two rare 
alleles at linked loci, there will be an association between 
them in the offspring. That is, if there are relationships 
among the animals used for the GWA study, the asso-
ciations discovered represent a mixture of associations 
caused by lD and associations caused by linkage. By 
linkage, we mean that the associations exist within a 
family or families but not across the whole population. 
This has two effects. First, SNPs some distance from a 
QTl may show an association to the trait, exacerbating 
the problem caused by long-range lD in many species 
of domestic animals. Second, these associations may be 
specific to the sample of families studied and may not  
be replicated in another sample of families from the 
same population.

Meuwissen et al.16 published results that were pro-
duced by accurately incorporating linkage disequilib-
rium and linkage analysis (lDlA), and this technique 
has been used to fine map QTls in chickens, dairy cattle 
and pigs17–19. However, the volume of data generated by 
GWA studies has caused scientists to revert to simpler 
linear models that consume less computer time than 
lDlA. One feature of lDlA is that it can be used to 
estimate the confidence interval for the position of the 
QTl16. By contrast, single SNP analysis in livestock often 
yields a collection of significant SNPs spread over many 
centimorgans, reflecting the extensive range of low-
level lD, and it is difficult to define the most likely QTl  
position and its confidence interval.

Calculating the number of SNPs to be analysed. The 
number of SNPs needed depends on the distance over 
which lD operates. If SNPs are too far apart a QTl 
may not be in sufficient lD with any of the markers, 
and so will be undetected. Increasing the SNP density  
will increase the power to detect QTls and, to some 
extent, increase the precision of mapping. However, if lD 
is high over a chromosome segment, increasing SNP den-
sity may still not allow one to position the QTls precisely  
within this segment.

Sutter et al.15 stated that only 10,000 SNPs are needed 
for within-breed analyses in dogs, but that 30,000 SNPs 
are needed for between-breed analyses. In cattle, signifi-
cant associations were found within a breed using only 
10,000 SNPs, but we estimate that 300,000 SNPs would 
be needed for between-breed analyses in B. taurus cat-
tle. This number was calculated using the data in FIG. 2b, 
which shows that the SNPs need to be spaced less than 
10 kb apart to show consistent LD phase across breeds. 
Between-breed analyses would need a SNP density 
similar to the widely used 375,000 SNP chip in humans; 
this is not surprising as short-range lD is similar in 
humans and cattle. The common ancestor of B. taurus 
and Bos indicus cattle dates to >500,000 years ago, so 
several million SNPs would be needed for SNPs to be 
close enough to each QTl that the same lD phase is 
consistently found in both subspecies. This marker den-
sity across the two subspecies could lead to very accurate 
mapping of QTls if they segregate in both subspecies, 
but it is not known how often this is the case. Among 
the small number of known QTls, a mutation in the 

DGAT1 gene, which affects fat percentage in milk, segre-
gates only in B.taurus20, whereas mutations in calpastatin 
and calpain, which affect meat tenderness, segregate in 
both B. taurus and B. indicus21.

Estimating the number of study animals. The number of  
animals needed for a GWA study depends on the size  
of the effects that one wishes to detect. The crucial 
parameter is the proportion of the variance explained by 
the SNP. This parameter combines the allele frequency 
with the mean difference between the SNP genotypes. 
An approximate idea of the number needed can be 
gained from the following simple calculation. The cor-
relation (r) between the marker and the trait, r(t,m), is 
equal to r(m,q) × r(q,g) × r(g,t), in which m is the marker 
genotype (usually scored 0, 1 or 2), q is the QTl geno-
type, g is the genetic value of the animal and t is the phe-
notypic value of the animal. r2(m,q) is the conventional 
r2 measure of lD, r2(q,g) is the proportion of genetic vari-
ance explained by the QTl, and r2(g,t) is the heritability 
of the trait.

For instance, if r 2(m,q) = 0.50, r 2(q,g) = 0.04 and 
r2(g,t) = 0.25, then r(t,m) = 0.07. If we require a stand-
ard error equal to 0.33, then the expected correlation 
and the number of animals required is 1,800 (as the 
standard error of a correlation coefficient is the square 
root of the number of animals). In practice, some SNPs 
explain more than 4% of the genetic variance assumed 
above, and so a smaller experiment would suffice but, in 
fact, most SNPs associated with human complex traits 
explain less than 4% of the genetic variance, and so over 
1,800 animals would be needed22. This assumes that the 
sizes of QTl effects are similar in domestic animals to 
those reported in humans; our preliminary findings sup-
port this assumption (M.e.G and B.j.H., unpublished 
observations).

The number of animals referred to above is the 
number for which both genotypes and phenotypes have 
been directly measured. The number can be reduced 
by using animals that have been progeny tested so that 
the mean of their progeny can be used instead of their 
own phenotypic value. This is advantageous as long 
as the mean phenotype of the progeny is more highly 
correlated with the animal’s breeding value than is its 
own phenotype. The formulae above still apply but now 
r2(g,t) is the reliability of the progeny test and t is the 
progeny mean.

Results of GWA studies
Monogenic trait mapping. As has been the case for older 
experimental methods of gene mapping, the greatest 
successes in identifying genes using GWA have been 
for monogenic traits (TABLe 1). For instance, Karlsson 
et al.23 discovered that mutations in the pigmentation-
related gene MITF cause white spotting in dogs. To map 
this gene they used two breeds, boxers and bull terriers, 
in which the white spotting trait was segregating, and 
then used common haplotypes between the two breeds 
to increase the precision of mapping. In cattle, Charlier 
et al.24 used GWA to identify three genes harbouring 
mutations causing three recessive abnormalities. This 
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Beavis effect
The tendency for statistically 
significant effects to be 
overestimated when many 
effects are tested for 
significance.

study was particularly efficient because the low Ne in 
cattle means that, typically, calves suffering from a fatal 
recessive disorder are homozygous for a large chromo-
some segment containing the causative gene, allowing 
this segment to be detected using moderately dense 
markers. For complex traits much larger numbers of 
animals would be needed, but the basic strategy seems 
applicable.

Complex trait mapping. For complex traits the results 
generally indicate many mutations, suggesting that the 
individual mutations each have a small effect. For exam-
ple, Kolbehdari et al.25 reported 196 SNPs in Canadian 
Holstein bulls with significant associations with traits 
describing the size and shape of cows. In the same breed, 
Daetwyler et al.26 found 144 significant SNPs for milk 
protein yield, Barendse et al.27 found significant SNPs 
for feed conversion efficiency, and lillehammer et al.28 
found significant SNPs for a genotype × environment 
interaction for milk yield at the level of herd production. 
In chickens, SNPs with significant associations with mor-
tality in broilers have been reported, both associations 
across environments and associations that differentially 
affect mortality in two different hygiene environments29. 
Another study in chickens reported 21 SNPs linked to 19 
genes associated with resistance to Salmonella enterica 
colonization30.

Validating SNP associations. However, in none of these 
cases were the significant SNPs confirmed in an inde-
pendent sample. There are three reasons for this. First, 
the effect size of each association is small, even in the 
original GWA study. However, when you account for  

the so-called Beavis effect31, the true effects are even 
smaller and so a very large confirmation experiment is 
needed to have the required power to confirm the effect. 
Second, the lD between the SNP and the QTl may be 
present in the original sample of animals but not in other 
samples from a different breed or even from different 
families within the same breed (FIG. 2b). Third, the false 
discovery rate is often high, and so most of the signifi-
cant associations are just those expected by chance when 
so many SNPs are tested.

In our own unpublished GWA studies, we find that 
SNP associations are most likely to be confirmed when 
the original GWA study used a large number of animals 
(>1,000) that were widely sampled from one breed, when 
the SNPs were highly significant, and when the confir-
mation was carried out in a large sample of the same 
breed (M.e.G and B.j.H., unpublished observations).

By contrast, GWA studies in humans have found 
many confirmed associations with complex traits, 
such as height22,32 and susceptibility to disease33. 
However, recently published papers have used con-
sortia of scientists to amass GWA studies with tens 
of thousands of subjects and confirmation samples of  
approximately equal or greater size (the Wellcome 
Trust Case Control Consortium34 is one such consor-
tium). Hopefully, experiments in domestic animals 
will soon be published that reflect the lessons learned 
from human studies. For instance, researchers in the 
Animal Improvement Programs laboratory (AIPl) at 
the united States Department of Agriculture have geno-
typed 7,000 Holstein bulls that could be in used in a 
powerful GWA study (see their Genomic Comparison 
of Young Bulls). 

Table 1 | Genes harbouring mutations affecting monogenic traits in dogs and cattle discovered by genome-wide association 

Phenotype Breed number of samples 
used

Gene harbouring 
causative mutation

Gene description Refs

Dog

Hairless Chinese crested, 
Peruvian hairless, 
Mexican hairless

195 FOXI3 Forkhead box transcription factor 
family, expressed in developing 
hair and teeth

66

Degenerative myelopathy Pembroke Welsh corgi 38 cases, 17 controls SOD1 Superoxide dismutase 1, soluble 67

Cone–rod dystrophy Wire-haired dachshund 13 discordant sibling pairs NPHP4 Nephronophthisis 4 68

White spotting Boxers, bull terriers 146 MITF Microphthalmia-associated 
transcription factor

23

Size and weight 148 breeds 2,801 IGF1 Insulin-like growth factor 1 35

Hair ridge Rhodesian and Thai 
ridgeback, other 
ridgeless breeds

21 in genome-wide 
association, 91 in 
subsequent fine mapping

Duplication of FGF3, 
FGF4, FGF19 and 
ORAOV1

133-kb duplication involving three 
fibroblast growth factor genes

69

Cattle

Congenital muscular 
dystonia 1

Belgian Blue 12 cases, 14 controls ATP2A1 ATPase, Ca2+ transporting, cardiac 
muscle, fast twitch 1

24

Congenital muscular 
dystonia 2

Belgian Blue 7 cases, 24 controls SLC6A5 Solute carrier family 6 
(neurotransmitter transporter, 
glycine), member 5

24

Ichthyosis fetalis Italian Chianina 3 cases, 9 controls ABCA12 ATP-binding cassette, sub-family A 
(ABC1), member 12

24

The genes here were selected as they have been validated in additional studies and, in many cases, have led to the discovery of the causative mutation.
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 Box 1 | Genetic architecture of complex traits

One of the surprising results in human genome-wide association (GWA) studies has been the small size of the 
observed effects22,32,34, which implies that many SNPs have effects on complex traits. This conclusion is supported by 
the results in domestic animals. However, the number of QTLs could be less than the number of SNPs with significant 
effects. Each QTL could be tracked by many SNPs because no individual SNP is in complete linkage disequilibrium (LD) 
with the QTL, especially in domestic animals in which LD extends over a wide distance and SNP density is not high. 

A second surprising result from human and domestic animal GWA studies is that the SNPs with validated effects 
only explain a small proportion of the genetic variance, leading to a question — where are the missing genes?58 Most 
QTLs might explain such a small proportion of the variance that even large human GWA studies lack the power  
to find them. This is consistent with the recent findings that combining data sets from different GWA studies leads to 
the discovery of additional genes59. Also, it may be that many QTLs are not in high LD with any one SNP. Although LD 
between common SNPs is high, QTLs may have different properties to common SNPs. For instance, most QTLs may 
be subject to selection so that polymorphisms are typically young and the minor allele frequency is low. Such 
polymorphisms show less LD with markers than common SNPs do, and so may not be detected by GWA studies that 
rely on LD. This is the case for mutations that are fatal and hence never reach high frequency, but one might expect 
that even QTLs of small effect are subject to some selection. If this were not true then genetic variance, which is 
caused each generation by mutation, would accumulate in large populations to reach high levels, and hence 
heritabilities would be high for all traits. This is not the case; therefore, selection must be eliminating variance in 
complex traits.

Some QTLs of larger effect have been discovered, such as the DGAT1 polymorphism that explains about 40% of the 
genetic variation in fat content in the milk of Holstein cattle60. Therefore, the distribution of effects of QTLs must have 
many small effects but a tail with larger but rare effects. An exponential distribution has been suggested61,62. It is likely 
that a mutation with a large effect on a complex trait will also be subject to larger selection pressure. In many cases 
this will tend to eliminate the mutant allele, but in some cases artificial selection by humans may select for the 
mutation. For instance, mutations in the myostatin gene that increase muscling would be detrimental in the wild but 
have been selected for by cattle and sheep breeders63,64.

Do genes affecting complex traits typically have multiple alleles segregating? If so, this could be one reason why 
QTLs are hard to pinpoint but, unfortunately, we do not know the answer because not enough QTLs have been found. 
It is clear that multi-allelic series exist at major genes — such as for the myostatin gene in cattle for which many 
double muscling mutations exist, as well as mutations of lesser effect63. However, these allelic series may only be 
discovered when the mutations are positively selected for by humans owing to their novelty or practical value. 
Therefore, if nature selects against most QTL mutations, it may be rare for a QTL to have more than two alleles 
segregating, especially within a breed whose effective population size is small.

Minor allele frequency
The frequency of the less 
frequent allele in a two-allele 
polymorphism.

Another design has also been employed success-
fully in dogs. jones et al.35 used the extensive variation 
between 148 dog breeds as the basis for mapping genes 
affecting size and behaviour. This approach identi-
fied insulin-like growth factor 1 (IGF1) as a gene that 
affects size or weight, and found SNPs that are pos-
sibly associated with pointing and herding behaviour. 
The validity of this approach rests on the assumption 
that the breeds used are a random sample of unre-
lated breeds. However, breeds tend to come in related 
groups (such as gun dogs) and so a SNP and a trait 
might seem to be associated because they both occur 
in a group of related breeds. This problem might be 
overcome by a very wide sampling of breeds so that 
related breeds make up a small part of the sample. This 
design assumes that the same mutations are polymor-
phic in different breeds. This is true for some well-
characterized mutations, such as the K232A mutation 
in DGAT1, which is polymorphic in Holstein, jersey 
and Ayrshire cattle36. Other mutations, such as some 
functional mutations in the myostatin gene, seem to 
be breed specific37.

The ideal design of a GWA study depends on the 
genetic architecture of complex traits, and the results of 
GWA studies in humans and in livestock are providing 
information about this architecture. In BOX 1 we argue 
that many mutations of different types affect a typical 
complex trait and that most of their effects are small 

but, despite this, they are often subject to weak natu-
ral selection and consequently have a low minor allele 
frequency (MAF). This architecture means that large 
numbers of individuals are needed for a GWA study to 
have the necessary power to find the genes explaining 
most of the genetic variance in a complex trait. 

Marker-associated selection
One justification for conducting GWA studies in live-
stock is to use the validated markers to select better 
livestock through marker-assisted selection (MAS)38. 
There are two types of MAS. The first makes use of 
a causative mutation that has been identified in a 
gene or regulatory region — such mutations typically 
have a major effect, as in a monogenic trait. examples 
include: the halothane gene in pigs that increases mus-
cle growth but makes the pigs susceptible to stress and 
halothane anaesthesia39; the booroola gene in sheep40 
that increases the number of lambs born to ewes that 
carry the gene; numerous recessive abnormalities, such 
as bovine leukocyte adhesion deficiency in cattle41; and 
a mutation in the PRNP locus that alters the resist-
ance of sheep to scrapie42. In most cases the purpose of 
selection is to eliminate the abnormal allele from the 
population, although it can also be used to increase  
the frequency of a rare allele, for instance, by intro-
gressing the booroola gene from Merino sheep into 
Border leicester sheep43.

R E V I E W S

NATuRe RevIeWS | Genetics  vOluMe 10 | juNe 2009 | 387

© 2009 Macmillan Publishers Limited. All rights reserved



Genomic breeding value 
An estimate of an animal’s 
genetic merit, including 
genomic information

The second type of MAS makes direct use of SNPs 
that are in lD with QTls. First, the effect associated 
with each allele of the significant marker or markers is 
estimated; to avoid bias the effect is ideally estimated in 
a population that is independent from the one in which 
the significant markers were discovered. Breeding values 
for selection candidates can then be estimated by com-
bining pedigree, marker and phenotype information44,45. 
This type of MAS has been applied to improve reproduc-
tion rate, feed intake, growth rate and body composition 
in various livestock species, meat quality in commercial 
lines of pigs, muscle development in sheep, and milk 
yield in dairy cattle45,46. The key criticism of MAS applied 
in this way is that its ability to predict breeding values is 
limited. This is because a low number of markers with 
validated associations typically explain a small proportion  
of the genetic variance in the trait.

Genomic selection
Experimental design. To overcome the deficiencies of 
MAS, Meuwissen et al.5 suggested a different approach, 
known as genomic selection. The key difference between 
the two approaches is that MAS concentrates on a small 
number of QTls that are tagged by markers with well-
verified associations, whereas genomic selection uses a 

genome-wide panel of dense markers so that all QTls are 
in lD with at least one marker. Genomic selection has two 
advantages. First, all the genetic variance for a trait can 
be tracked by the marker panel. This is true even if the 
experiment lacks the power needed to detect all significant 
QTls, as a marker effect does not need to exceed a strin-
gent significance threshold to be used to predict breeding 
value or phenotype. Increasing the power does, however, 
increase the accuracy with which the marker effects are 
estimated. Second, the effect of the marker alleles can  
be estimated on a population basis rather than within each 
family, because the markers and the QTls are in lD.

For genomic selection one needs a sample of animals 
that have been assayed for the markers and recorded for 
the trait — this is the reference population. This sample 
is analysed to derive a prediction equation that predicts 
breeding value from marker genotypes — the genomic 
breeding value — such that the effect of each marker is 
predicted simultaneously with the other markers. This 
formula can then be applied to predict the breeding 
value of selection candidates that have marker genotypes 
but no trait record (BOX 2). Thus, as for other forms of 
MAS1, genomic selection is particularly advantageous 
for traits that are difficult to record at a young age. For 
instance, dairy bulls are 5 years old by the time they can 
be assessed on the basis of their daughters’ milk yields. 
Genomic selection of dairy bulls at 1 year of age could 
greatly reduce the generation interval and hence speed 
up the rate of  genetic improvement47. Of course, the suc-
cess of genomic selection depends on the accuracy with 
which breeding value can be predicted in the selection 
candidates (FIG. 3).

Results of genomic selection. In simulated data Meuwissen 
et al.5 found the accuracy of the genomic breeding value 
— that is, the correlation between the genomic breed-
ing value and the true breeding value — to be 0.85. 
Results from real data have not reached this level of  
accuracy, but vanRaden et al.48 reported a correlation  
of 0.71 in Holstein–Friesian dairy cattle, averaged across 
a number of traits. They used a reference population of 
3,576 bulls genotyped for 38,416 SNPs. Phenotypes for 
the bulls were the averages of their daughters’ produc-
tion records. For comparison, the accuracy of estimated 
breeding values for calves at birth, based on the aver-
age of their parents’ breeding value, is only about 0.5. 
Harris et al.49 reported similar accuracies of genomic 
breeding value in New Zealand Holstein–Friesian and 
jersey dairy cattle, and Hayes et al.50 reported some-
what lower accuracies for the genomic breeding value 
from a much smaller reference population in Australian 
Holstein–Friesians. In mice, using genomic predictions 
— including additive SNP effects or both additive and 
dominance SNP effects — instead of using pedigree 
information alone can give a higher accuracy of phe-
notype prediction for various traits, including weight, 
growth slope, body mass index, body length, coat colour, 
percentage of CD8+ cells present and mean cellular hae-
moglobin51,52. In chickens, González-Recio et al.53 were 
able to show an almost fourfold increase in the accu-
racy of prediction of yet-to-be observed phenotypes for 

Box 2 | Genomic selection

A large sample of animals 
is measured for the trait 
and genotyped for 
markers. The genotypes 
can be represented by a 
variable (x), which takes 
the values 0 or 1 or 2 
corresponding to one of 
the homozygotes, the 
heterozygote or the other homozygote. The statistical 
analysis of the reference population estimates effects for 
each marker (w), and hence a prediction equation can be 
generated that combines all the marker genotypes with 
their effects to predict the breeding value of each animal. 
This prediction equation can then be applied to a group 
of animals that have genotypes but not phenotypes, and 
the estimated breeding values calculated from this can be 
used to select the best animals for breeding.

Nature Reviews | Genetics

Reference population

Prediction equation

Selection candidates

Selected breeders

Using genomic
breeding values

Marker
genotypes

Known 
genotypes
and phenotypes

Genomic breeding value =
w1x1 + w2x2 + w3x3……..
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Figure 3 | calculation of number of animals in a reference population and 
accuracy of breeding values. a | Number of animals needed in a reference 
population. To achieve an accuracy of 0.7 for estimated genomic breeding values 
(GEBVs) calculated from SNPs requires an increasing number of animals in the 
reference population as the heritability declines or the N

e 
of the population increases. 

b | Accuracy of GEBVs of un-phenotyped individuals with increasing number of 
phenotype records in the reference population used to estimated SNP effects, for 
different heritabilities (h2). N

e
 was 100.

food conversion rate in broilers when genomic predic-
tions of phenotype were used compared with pedigree  
predictions of phenotype.

Some of the statistical methods for genomic selection 
have been reviewed elsewhere54,55. The various meth-
ods make assumptions about the distribution of SNP  
effects on the trait, such as the proportion of the SNPs 
that have any effect on the trait. The best results have 
been obtained by methods that assume that many 
thousands of SNPs have an effect on traits such as milk 
yield48, which is consistent with the results of GWA stud-
ies26 (M.e.G. and B.j.H., unpublished observations). If 

many SNPs have an effect, these effects on average must 
be small. To estimate small effects accurately requires a 
large sample size and, not surprisingly, the accuracy of 
genomic selection increases as sample size increases, at 
least up to a reference population size of 3,500 (reF. 48).

We have developed an analytical method for predict-
ing the accuracy of genomic selection54,56 assuming that 
all SNPs have an effect and these effects are normally 
distributed. The size of the reference population that is 
needed to achieve a given accuracy is shown in FIG. 3.  
unless the Ne is small, a large sample of animals is 
needed in the reference population if accurate predic-
tion of breeding value is desired. This theory predicts the  
upper limit of the number of animals required. If  
the SNP effects are not normally distributed, with some 
large effects and many SNPs with no effect, the number 
of animals needed is reduced54.

Challenges for genomic selection. The major challenge is 
assembling the large reference population that is required 
to accurately estimate SNP effects. In some cases this 
has been achieved; for example, a project run by the uS 
Department of Agriculture has assembled a reference 
population of approximately 6,700 dairy bulls, leading to 
an accuracy of genomic breeding values for young dairy 
bulls of greater than 0.8 (reF. 57). These accuracies are  
sufficiently high that some uS breeding companies  
are marketing semen from young bulls on the basis of 
their DNA and pedigree information alone. Smaller ref-
erence populations of dairy bulls have been assembled in 
Australia, New Zealand and the Netherlands, resulting 
in impressive but lower accuracies of genomic breeding 
values50. Another major challenge, particularly in the 
beef cattle and sheep industries, is the involvement of 
multiple breeds. Given the limited extent of lD across 
breeds, large multi-breed reference populations must be 
assembled and genotyped for many (>300,000) SNPs 
before genomic selection can be applied.

There are still several unknowns in the implemen-
tation of genomic selection. For instance, how often 
will the marker effects have to be re-estimated and new 
markers discovered? The cost of genotyping may delay 
implementation in species such as sheep and chickens, in 
which individual animals are less valuable than in cattle. 
However, even in these species, selection in the top lay-
ers of the stud pyramid should prove profitable because 
the benefits can be recouped from a large population 
descended from the genotyped and selected animals.

The future
The benefits from the study of complex traits in domes-
tic species are an increase in scientific knowledge and 
practical improvements in breeding programmes. 
large populations with recorded phenotypes exist and, 
in some cases, there are males with accurate estimates 
of breeding value for traits that are based on a prog-
eny test, allowing designed mating programmes to be 
implemented. The breeds within a species show a large 
amount of genetic variation owing to deliberate selec-
tion and genetic drift in populations of small Ne. long-
range lD within a breed, but not between breeds, allows 
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rapid mapping to a large region and then more precise 
mapping to a single gene or a few genes. The small Ne 
should also lead to greater homogeneity within a breed 
so that there are fewer genes causing variation within 
a breed.

These advantages are likely to be translated into 
many newly discovered QTls from GWA studies in 
the near future as dense SNP arrays for nearly all the 
major domestic species have recently become avail-
able. However, to capture the benefits of GWA studies, 
experiments on domestic animals should learn from 
those reported on humans. This means an increase in 
the number of animals and the number of SNPs, and 
routine validation of significant associations in an  
independent sample of animals.

QTl effects are typically small, and so many animals 
are needed to estimate them accurately. One way to 
achieve this would be by collaboration between differ-
ent scientists, but at present this is inhibited by com-
mercial use of the SNP genotypes. A larger number  
of animals is needed to detect associations with traits of 
low heritability (for example, fertility) and, unless these 
large numbers can be achieved, genomic selection for 
these traits will be less accurate and fewer QTls will 
be discovered. Genomic selection would be especially 

useful for traits that are expensive to measure (for exam-
ple, methane production), but unfortunately this also 
makes it expensive to carry out the experiments needed 
to find markers.

Increasing the number of SNPs above 50,000 may 
not be necessary if one worked entirely within a breed, 
such as Holstein. However, mapping QTls is much more 
accurate if advantage is taken of multiple breeds — this 
requires denser SNPs because lD extends for only a short 
distance between breeds. Also, genomic selection would 
be more accurate if SNP effects could be estimated across 
breeds, but this will also require denser SNPs.

To support this research, the genomes of some spe-
cies (such as the goat) need to be sequenced and SNP 
chips need to be made available for many more species. 
Information from SNP genotyping will soon be supple-
mented with genome resequencing. This should increase 
the power to detect QTls and simplify the discovery of 
causative mutations. However, if neutral mutations exist 
in high lD with a causative mutation across all breeds, 
it will remain difficult to identify the causal mutation. 
Although the use of these resources will initially be 
directed to practical outcomes, such as genomic selec-
tion, we expect that many causal mutations underlying 
QTls will also be discovered in domestic animals.
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The search for genetic factors that influence common 
complex traits and the characterization of the effects of 
those factors is both a goal and a challenge for modern 
geneticists. In recent years, the field has been revolution-
ized by the success of genome-wide association (GWA) 
studies1–5. Most of these studies have used a single-locus 
analysis strategy, in which each variant is tested individu-
ally for association with a specific phenotype. However, a 
reason that is often cited for the lack of success in genetic 
studies of complex disease6,7 is the existence of interac-
tions between loci. If a genetic factor functions primarily 
through a complex mechanism that involves multiple 
other genes and, possibly, environmental factors, the 
effect might be missed if the gene is examined in isola-
tion without allowing for its potential interactions with 
these other unknown factors. For this reason, several 
methods and software packages8–15 have been developed 
that consider the statistical interactions between loci 
when analysing the data from genetic association studies. 
Although in some cases the motivation for such analyses 
is to increase the power to detect effects16, in other cases 
the motivation has been to detect statistical interactions 
between loci that are informative about the biological 
and biochemical pathways that underpin the disease7. We 
return to this complex issue of biological interpretation  
of statistical interaction later in the article.

The purpose of this Review is to provide a survey of 
the methods and related software packages that are cur-
rently being used to detect the interactions between the 
genetic loci that contribute to human genetic disease. 
Although the focus is on human genetics, many of the 
concepts and approaches are strongly related to methods 

used in animal and plant genetics. I begin by describing 
what is meant by statistical interaction and by setting 
up the definitions and notation for the following sec-
tions. I then explain how one might test for interaction 
between two or more known genetic factors and how 
one might address the slightly different question of test-
ing for association with a single factor while allowing 
for interaction with other factors. In practice, one rarely 
wishes to test for interactions that occur only between 
known factors, unless perhaps to replicate a previous 
finding or to test a specific biological hypothesis. It is 
more common to search for interactions or for loci that 
might interact, given genotype data at potentially many 
sites (for example, from a GWA analysis or from a more 
focused candidate gene study). I continue the article 
by outlining different methods and software packages 
that search for such interactions, ranging from simple 
exhaustive searches to data-mining and machine-learning 
approaches to Bayesian model selection approaches. 
Throughout these sections I use the analysis of a pub-
licly available genome-wide data set on Crohn’s disease 
from the Wellcome Trust Case Control Consortium 
(WTCCC) as a recurring example1. I conclude the article 
with a section discussing the biological interpretation of 
results found from such statistical interaction analyses.

There is a long history of the investigation of inter-
actions in genetics, ranging from classical quantitative 
genetic studies of inbred plant and animal populations17–19 
to evolutionary genetic studies20 and, finally, to linkage 
and association studies in outbred human populations. 
In this article, I focus primarily on human genetic asso-
ciation studies; readers are referred to refs 20–25 for a 
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Data mining
The process of extracting 
hidden patterns and 
potentially useful information 
from large amounts of data.

Machine learning
The ability of a program to 
learn from experience, that is, 
to modify its execution on the 
basis of newly acquired 
information. A major focus of 
machine-learning research is to 
automatically produce models 
(rules and patterns) from data.

Bayesian model selection
A statistical approach for 
selecting models by 
incorporating both prior 
distributions for parameters of 
the models and the observed 
experimental data.

Detecting gene–gene interactions  
that underlie human diseases
Heather J. Cordell

Abstract | Following the identification of several disease-associated polymorphisms by 
genome-wide association (GWA) analysis, interest is now focusing on the detection of effects 
that, owing to their interaction with other genetic or environmental factors, might not be 
identified by using standard single-locus tests. In addition to increasing the power to detect 
associations, it is hoped that detecting interactions between loci will allow us to elucidate 
the biological and biochemical pathways that underpin disease. Here I provide a critical 
survey of the methods and related software packages currently used to detect the 
interactions between genetic loci that contribute to human genetic disease. I also discuss 
the difficulties in determining the biological relevance of statistical interactions.
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Maximum likelihood
A statistical approach that is 
used to make inferences about 
the combination of parameter 
values that gives the greatest 
probability of obtaining the 
observed data.

Saturated
A term for a statistical model 
that is as full as possible 
(saturated) with 
parameters. such a model is 
sometimes useful as it serves as 
a benchmark to quantify how 
well a simpler model (one with 
fewer parameters) fits the data.

discussion of interactions in the context of evolutionary 
genetics or in human genetic linkage analysis.

definition of statistical interaction
Interaction as departure from a linear model. The most 
common statistical definition of interaction relies on the 
concept of a linear model that describes the relationship 
between an outcome variable and a predictor variable 
or variables. We propose a particular model for how we 
believe the predictors might relate to the outcome and 
we use data (measurements of the relevant variables 
from a number of individuals) to determine how well the 
model fits our observed data and to compare the fit of  
different models. Arguably the most well-known form 
of this type of analysis is simple linear or least squares 
regression26, in which we relate an observed quantitative 
outcome y (for example, weight) to a predictor variable x 
(for example, height) using a ‘best fit’ line or regression 

equation y = mx + c. More generally, we might use multiple  
regression26 to include several different predictor vari-
ables (for example, x1, x2 and x3, to represent height, age 
and gender).

From a statistical point of view, interaction repre-
sents departure from a linear model that describes how 
two or more predictors predict a phenotypic outcome 
(BOX 1). For a disease outcome and case–control data, 
rather than modelling a quantitative trait y, the usual 
approach is to model the expected log odds of disease as 
a linear function of the relevant predictor variables26,27. 
using genotype data, we can evaluate the likelihood of 
the data under this model and use maximum likelihood 
or other methods to estimate the regression coeffi-
cients and test hypotheses, such as the hypothesis that 
the interaction term (i in the mathematical formula in 
BOX 1) equals zero.

Supplementary information S1 (box) describes some 
specific models that follow this general formula, includ-
ing the saturated genotype model. Although this model 
provides the best possible fit to the data, it includes many 
parameters. We can make parameter restrictions to gen-
erate fewer degrees of freedom and thus increase power. 
Although written in terms of nine or fewer regression 
parameters, the models in Supplementary information 
S1 (box) represent an infinite number of different mod-
els, depending on the values taken by the regression 
parameters. There has been some interest in categorizing 
these models28–30 to aid mathematical or biological inter-
pretation. As discussed below, biological interpretation 
is usually easiest when the penetrance values all equal 
either zero or one, leading to a clear relationship between 
the genotype and phenotype; however, this situation is 
unlikely for complex genetic diseases.

Marginal effects. An important issue in genetic studies is 
whether there are factors that display interaction effects 
without displaying marginal effects6,31. Factors that display 
interaction effects without displaying marginal effects 
will be missed in a single-locus analysis, as they do not 
lead to any marginal correlation between the genotype 
and phenotype when each locus is considered individu-
ally. It is not clear in practice how often this might occur, 
as many models that include an interaction term even in 
the absence of main effects (α and β in the mathematical 
formula in BOX 1) lead to substantial marginal effects, 
that is, they show correlations between the genotype and 
phenotype that are detectable in a single-locus analysis. 
Thus, although one may derive mathematical models 
(sets of specific values for the regression coefficients) that 
lead to single-locus models without marginal effects6, 
it remains to be seen whether such models represent 
common underlying scenarios — and thus a potentially  
serious problem — in complex genetic diseases.

For simplicity, I have concentrated here on defining 
interaction in relation to two genetic factors (two-locus 
interactions). In practice, however, for complex diseases 
we might also expect three-locus, four-locus and even 
higher-level interactions. Mathematically, such higher-
level interactions are simple extensions to the two-locus 
models described earlier. The problem with these models 

 Box 1 | statistical models of interaction

Linear, multiple and logistic regression
Statistical interaction can best be described in relation to a linear model that 
describes the relationship between an outcome variable and some predictor 
variable or variables. In linear regression, we model a quantitative outcome y as a 
function of a predictor variable x using the regression equation y = mx + c. Here  
the regression coefficient m corresponds to the slope of the best-fit line and the 
regression coefficient c corresponds to the intercept. We use the values of pairs of 
data points (x, y) (for example, if x and y are, respectively, measurements of height and 
weight in different individuals) to estimate m and c, such that the line y = mx + c fits 
the observed data as closely as possible.

In multiple regression, we extend this idea to include several different predictor 
variables using an equation such as y = m

1
x

1
 + m

2
x

2
 + m

3
x

3
 + c. Here we are implicitly 

assuming that there is a linear relationship between each of the predictor variables x
1
, 

x
2
 and x

3  
and the outcome variable y, so that for each unit increase in x

1
, y is expected 

to increase by m
1
 (and similarly for x

2
 and x

3
).

In logistic regression, rather than modelling a quantitative outcome y, we model the 
log odds ln(p/(1 – p)) (in which p is the probability of having a disease). For example, we 
might propose the model ln(p/(1 – p)) = α + βx

B
 + γx

C
 + ix

B
x

C
, in which x

B
 and x

C
 are 

measured binary indicator variables that represent the presence or absence of genetic 
exposures at loci B and C respectively, β and γ are regression coefficients that 
represent the main effects of exposures at B and C, and the coefficient i represents an 
interaction term16 (a term that is required in addition to the linear terms for B and C).

Testing for interaction
Tests of interaction correspond to testing whether the regression coefficients that 
represent interaction terms in the above mathematical formula equal zero or not. In 
the logistic regression example above, this would correspond to a one degree of 
freedom test of i = 0. In the saturated genotype model described in Supplementary 
information S1 (box), it would correspond to a four degrees of freedom test of  
i

11
 = i

12
 = i

21
 = i

22
 = 0. Tests of association (for example, at a given locus C) while allowing 

for interaction (for example, with another locus B) correspond to comparing a linear 
model in which the main effects of B, C and their interactions are included with  
a model in which all the terms (main or interaction) that involve locus C are removed. 
For example, if modelling the log odds as ln(p/(1 – p)) = α + βx

B
 + γx

C
 + ix

B
x

C
, then the 

test of association at C allowing for interaction with B corresponds to a two degrees of 
freedom test of γ = i = 0. This is in contrast to the one degree of freedom pure 
interaction test of i = 0. One could also construct a pairwise test of the joint effects at 
both loci, including interactions, by comparing a model in which the main effects of 
loci B, C and their interactions are included with a model in which only the baseline 
intercept α is included. This gives a three degrees of freedom test of association 
allowing for interaction if a binary or allelic code is used, or an eight degrees of 
freedom test52 if a saturated genotype model (Supplementary information S1 (box)) is 
used. Tests with fewer degrees of freedom could be used by prior grouping of the 
two-locus genotypes according to certain prespecified classification schemes15,29.
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Penetrance
The probability of displaying  
a particular phenotype (for 
example, succumbing to a 
disease) given that one has  
a specific genotype.

Marginal effects
The average effects (for 
example, penetrances) of a 
single variable, averaged over 
the possible values taken by  
other variables. These could be 
calculated for one locus of a 
two-locus system as the 
average of the two-locus 
penetrances, averaged over the 
three possible genotypes at 
the other locus.

Logistic regression model
A statistical model that is used 
when the outcome is binary.  
It relates the log odds of the 
probability of an event to a 
linear combination of the 
predictor variables.

Multinomial regression
A statistical approach, similar 
to logistic regression, which is 
used when the outcome takes 
one of several possible 
categorical values.

Confounding
A phenomenon whereby  
the measure of association 
between two variables is 
distorted because other 
variables, associated with  
both variables of interest,  
are not controlled for in the 
calculation.

Empirical Bayes procedure
A hierarchical model in which 
the hyperparameter is not a 
random variable but is 
estimated by another (often 
classical) method.

Information theory
A branch of applied 
mathematics involving the 
quantification of information.

Entropy
A key measure used in 
information theory that 
quantifies the uncertainty 
associated with a random 
variable. for example,  
a variable indicating the 
outcome from a toss of a coin 
will have less entropy than a 
variable indicating the outcome 
from a roll of a die (two versus 
six equally likely outcomes).

is that they contain many parameters, and extremely 
large data sets would be required to accurately estimate 
these parameters. Interpreting the resulting parameter 
estimates is also complicated, except perhaps in some 
simple cases; for example, when risk alleles at all loci are 
required to alter disease risk (that is, when only the full 
multi-locus interaction term differs from zero).

testing for interaction between known factors
Regression models. For two or more known or hypothet-
ical genetic factors that influence disease risk, arguably 
the most natural way to test for statistical interaction on 
the log odds scale is to fit a logistic regression model that 
includes the main effects and relevant interaction terms 
and then to test whether the interaction terms equal 
zero. A similar approach can be used for quantitative 
phenotypes, in which case linear rather than logistic 
regression is used. These analyses can be performed in 
almost any statistical analysis package after construc-
tion of the required genotype variables. Alternatively, 
the ‘--epistasis’ option in the whole-genome analysis 
package PlInK12 provides a logistic regression test for 
interaction that assumes an allelic model for both the 
main effects and the interactions.

A more powerful approach in case–control stud-
ies is to use a case-only analysis32–34. Case-only analy-
sis exploits the fact that, under certain conditions, an 
interaction term in the logistic regression equation cor-
responds to the dependency or the correlation between 
the relevant predictor variables within the population 
of cases. A case-only test of interaction can therefore be 
performed by testing the null hypothesis that there is 
no correlation between alleles or genotypes at the two 
loci in a sample that is restricted to cases alone. This test 
can easily be performed using a simple χ2 test of inde-
pendence between genotypes (a four degrees of freedom 
test) or alleles (a one degree of freedom test), or using 
logistic or multinomial regression in any statistical analysis 
package.

The main problem with the case-only test is its 
requirement that the genotype variables are not cor-
related in the general population. It is this assumption, 
rather than the design per se, that provides the increased 
power compared with case–control analysis. The case-
only test is therefore unsuitable for loci that are either 
closely linked or show correlation for another reason 
(for example, if certain genotype combinations are 
related to viability). In contrast to epidemiological stud-
ies of environmental factors, in which correlation and  
confounding between variables is common, in genetic 
studies the assumption of independence between 
unlinked genetic factors seems reasonable. one could use 
a two-stage procedure to test first for correlation between 
the loci in the general population and then use the out-
come to determine whether to perform a case-only or 
case–control interaction test. However, this procedure  
has potential bias35.

A preferable approach is to incorporate the case-only 
and case–control estimators into a single test. Zhao et al.36  
proposed a test based on the difference in inter-
locus allelic association between cases and controls, 

an idea originally suggested by Hoh and ott37. The  
‘--fast-epistasis’ option in PlInK12 performs a similar 
test. Zhao et al.36 found that their test had greater power 
than a four degrees of freedom logistic regression test of 
gene–gene interaction. However, this increase in power 
might be largely due to the lower number of degrees of 
freedom in their allelic test compared with a genotypic 
test. Mukherjee and Chatterjee35,38 proposed an empirical 
Bayes procedure that uses a weighted average of the case–
control and case-only estimators of the interaction. This 
approach exploits the gene–gene independence assump-
tion and thus the power of case-only analysis, and addi-
tionally incorporates controls, allowing the estimation of 
main effects. Routines that implement this procedure are 
available for Microsoft office excel and MATlAB.

Other approaches. Although regression-based tests 
of interaction seem the most natural approach, given 
the definition of interaction as departure from a linear 
regression model, alternative approaches have been pro-
posed. Yang et al.39 proposed a method based on parti-
tioning of χ2 values that, similarly to ref. 36, compares 
inter-locus association between cases and controls. Their 
method was more powerful than logistic regression 
when the loci had no marginal effects. Recently, there 
has been interest in information theory or entropy-based 
approaches for modelling genetic interactions40–43. It is 
unclear whether this framework offers any advantage 
over more standard statistical methods of modelling of 
the same predictor variables as, in most cases, the condi-
tional probability statements that are implied by the two 
approaches are equivalent44.

Family-based studies. Here I focus on testing for interac-
tion in the context of case–control or population-based 
studies. Several related methods have been proposed to 
test for interaction in the context of family-based asso-
ciation studies45–49. The case–pseudocontrol approach46 
offers a regression-based framework that allows interac-
tion tests that are similar to those described here. Given 
the larger sample sizes that are required when testing 
for interaction rather than main effects50,51, it is unclear 
whether investigators will have family-based cohorts 
of a sufficient size to provide high power to detect 
interactions. However, such cohorts might provide a 
useful resource for the replication and characteriza-
tion of interaction effects that have been found using 
alternative methods.

tests for association allowing for interaction
Rather than testing for interaction per se, many research-
ers are interested in allowing for interaction with other 
genetic or environmental factors when testing for asso-
ciation at a given genetic locus. The rationale is that, if 
the test locus influences the disease or phenotypic out-
come by interacting with another factor, then allowing 
for this interaction should increase the power to detect 
the effect at the test locus. From a mathematical point of 
view, a test for association at a given locus C while allow-
ing for interaction with another locus B (a joint test16) 
corresponds to comparing the fit to the observed data 
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Permutation
This method is often used  
in hypothesis testing. An 
empirical distribution of a  
test statistic is obtained by 
permuting the original sample 
many times and recalculating 
the value of the test statistic  
in each permuted data set.  
each permuted sample is 
considered to be a sample of 
the population under the null 
hypothesis.

Multiple testing
An analysis in which multiple 
independent hypotheses are 
tested. If a large number of 
tests are performed, the 
significance level (p value) of 
any particular test must be 
interpreted in light of this fact, 
as the overall combined 
probability of making a type I 
error will increase.

Bonferroni correction
The simplest correction  
of individual p values for  
multiple hypothesis testing  
can be calculated using  
pcorrected = 1 – (1 – puncorrected)

n,  
in which n is the number of 
hypotheses tested. This 
formula assumes that the 
hypotheses are all 
independent, and simplifies  
to pcorrected = npuncorrected when 
npuncorrected <<1.

Q–Q plot
A quantile–quantile plot is a 
diagnostic plot that can be 
used to compare the 
distribution of observed test 
statistics with the distribution 
expected under the null 
hypothesis. Those tests that lie 
significantly above the line of 
equality between observed 
and expected quantiles are 
considered significant in the 
context of the number of tests 
performed.

of a linear model in which the main effects of B, C and 
their interactions are included with a model in which 
all the terms (main or interaction) involving locus C are 
removed (BOX 1).

Theoretically, if no interaction effects exist, these 
joint tests will be less powerful than marginal single-
locus association tests. However, if interaction effects 
exist, then the power of joint tests can be higher than that  
of single-locus approaches52. Kraft et al.16 showed  
that the joint test of a genetic effect while allowing for 
interaction with a known environmental factor had a 
near optimal performance over a wide range of plausible 
underlying models. This test uses case–control data to 
test the combination of a main effect at locus C and an 
interaction effect. As case-only analysis provides a more 
powerful test for the interaction effect32–34, Chapman and 
Clayton53 proposed using a version of the joint test that 
combines a case–control main effect component with a 
case-only interaction component.

The joint test of association while allowing for inter-
action assumes that there is some known or hypothetical 
measured factor that might interact with the test locus. 
In the absence of a specific factor of this type, a natural 
approach is to average over all other potentially interact-
ing genetic factors when performing a test at a locus. 
A Bayesian method for this approach in the context  
of GWA studies is in development14 and a beta version of  
the associated Bayesian Interaction Analysis software is 
available in limited release from its authors on request. 
Rather than averaging over all possible interacting loci, 
Chapman and Clayton53 proposed using the maximum 
value of the joint test evaluated over a predefined set 
of potentially modifying loci and assessing significance 
using a permutation argument.

I have concentrated on the issue of testing either for 
interaction or for association while allowing for interac-
tion at one or two specific genetic variants of interest. 
Rather than testing a single variant, it is now common 
to have genotype data for many variants that might 
or might not have any prior evidence for involvement 
with disease. Given such data, various model selection 
approaches have been proposed that allow one to step 
through a sequence of regression models searching 
for significant effects, including both main effects and 
interactions8–10,13,37,54–56. These approaches are described 
in more detail in subsequent sections. First, I describe an 
approach that is feasible provided the number of main 
and interaction effects to be examined is not too large, 
namely, a simple exhaustive search.

exhaustive search
Two-locus interactions. Given genotype data at sev-
eral different loci, arguably the simplest way to search 
for interactions between these loci is by an exhaustive 
search. For example, to test all two-locus interactions, 
one could analyse all possible pairs of loci and perform 
the desired interaction test for each pair. Similarly, if 
testing for association while allowing for interaction, 
one could perform the relevant three or eight degrees of 
freedom test52 (BOX 1, Supplementary information S1 
(box)). Clearly, an exhaustive search of this type raises 

a multiple testing issue analogous to the multiple testing 
issue encountered in single-locus analysis of GWA stud-
ies1. If all the tests are independent, a Bonferroni correc-
tion is appropriate52; however, linkage disequilibrium 
between loci can induce correlation between many of 
the tests. When testing for association while allowing for 
interaction, additional correlation occurs owing to the 
fact that the main effect of a locus will be a component 
of all tests that involve that locus. Theoretically, one can 
use permutation53 to assess significance while allowing 
for the multiplicity of and correlation between the tests 
performed, but, for several loci, this approach might be 
computationally prohibitive.

A pragmatic approach to the multiple testing issue in 
single-locus analysis of GWA studies is to use a stringent 
significance threshold (for example, p = 5 × 10–7) cou-
pled with replication in an independent data set to avoid 
generating large numbers of false positives. Stringent sig-
nificance thresholds can also be motivated by Bayesian 
arguments concerning the low prior probability of any 
given variant being associated with disease1. In prac-
tice, the Q–Q plot1 has emerged as the tool of choice for  
visualizing the results from an entire-genome scan.

An exhaustive search of all two-locus interactions 
from a genome scan is time consuming but compu-
tationally feasible. Marchini et al.52 quote a time of 
33 hours on a 10-node cluster to perform all pairwise 
tests of association allowing for interaction at 300,000 
loci in 1,000 cases and 1,000 controls. The PlInK12 web-
site quotes 24 hours to test (using the ‘--fast-epistasis’ 
option) all pairwise interactions at 100,000 loci typed in 
500 individuals. Given that genome-wide studies now 
routinely generate between 500,000 and 1,000,000 mark-
ers in 5,000 or more individuals, these times will need 
to be scaled upwards by several weeks or even months, 
but an exhaustive search of all two-locus interactions still 
remains feasible. In addition, as each test can be com-
puted independently of all other tests, the entire search 
can be split up into several separate jobs and analysed by 
parallel processing facilities, if they are available.

Higher-order interactions. The problem with an 
exhaustive search is that it does not scale up to analyse 
higher-order interactions. Because the number of tests 
and therefore the time taken to perform the analysis 
increases exponentially with the order of interaction 
analysed, an exhaustive search of all three-way, four-
way or higher-level interactions seems impractical in 
a genome-wide setting. For this reason, two-stage pro-
cedures have been proposed52,57,58, in which a subset of 
loci that pass some single-locus significance threshold 
are chosen, and an exhaustive search of all two-locus 
interactions (or a higher order if required, perhaps con-
ditional on significant lower-order effects58) is carried 
out on this ‘filtered’ subset. The obvious drawback with 
this approach is that loci will only be filtered into the 
second or subsequent stages of the testing procedure if 
they show a marginal association with the phenotype. 
Therefore, this procedure would not be expected to be 
useful for detecting interactions that genuinely occur in 
the absence of marginal effects.
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High-dimensional data
Data that contain information 
on a large number of variables, 
albeit possibly measured in a 
small number of subjects or 
replicates.

Cross-validation
This approach involves 
partitioning a data set into 
smaller subsamples, 
performing an analysis in  
one subsample and using the 
other subsample to measure or 
validate how well the analysis 
has performed. To reduce 
variability, multiple rounds of 
cross-validation are often 
performed using different 
partitions of the data and the 
validation results are averaged 
over the rounds.

Overfitting
The phenomenon in which a 
complex model might provide  
a good fit to the current data 
set but is overfitted to the 
random quirks present in  
that particular data set and 
therefore cannot be generalized 
to future data sets in the way 
that a simpler model might be.

use of a single-locus significance threshold is not the 
only way to reduce the number of markers for testing. 
Several of the machine-learning approaches described 
in the next section (in particular ReliefF and random 
forests) could be used, as they do not require a locus to 
have a significant marginal effect. Biological plausibility 
offers an alternative strategy. Bochanovits et al.59 used 
evidence of co-adaptation between loci in the mamma-
lian genome to select genes for interaction testing in a 
human study. emily et al.60 used experimental knowl-
edge of biological networks to reduce the number of 
interaction tests from 1.25 × 1011 to 7.1 × 104 when 
analysing genotype data from the WTCCC1. In their 
analysis of seven disease cohorts, they found four sig-
nificant interaction effects, including one of p = 1 × 10–9 
between rs6496669 on chromosome 15 and rs434157 
on chromosome 5 in Crohn’s disease. An example of 
applying semi-exhaustive testing to this same data set 
using the ‘--fast-epistasis’ and ‘--case-only’ options in 
PlInK12 is shown in fIG. 1.

data-mining methods and related approaches
Traditional regression-based methods are often criti-
cized8,31,61 for their inability to deal with nonlinear 
models and with high-dimensional data that contain 
many potentially interacting predictor variables, lead-
ing to sparse contingency tables that have many empty 
cells. For this reason, machine-learning or data-mining 
methods developed in the field of computer science are 
sometimes preferred. The selection of predictor vari-
ables and the interactions between them that predict an 
outcome variable is a well-known problem in the fields 
of machine learning and data mining. Data-mining 
approaches do not fit a single prespecified model, nor 
do they attempt an exhaustive search, but rather they 
attempt to step through the space of possible models, 
including potentially large numbers of main effects and 
multiway interactions, in a computationally efficient way. 
Many data-mining approaches are equivalent to stepping 
through a particular sequence of regression models and 
attempting to find the model that best fits the data; the 
distinction that is often made between data-mining and 
regression models is therefore, to some extent, false. 
nonlinearity is not an issue when fitting a saturated 
model, although it might be an issue for more restricted 
models. one common theme in data mining is the use of 
cross-validation62 to avoid overfitting problems.

Data-mining methods typically have problems 
dealing with incomplete or unbalanced data sets; for 
example, when the number of cases and controls are 
unequal63. They also do not always deal well with cor-
related predictors that show colinearity. This has been 
addressed in the mainstream statistics literature by the 
introduction of penalized regression approaches64,65 that 
allow large numbers of predictor variables to be included 
in a regression model but with many estimated regres-
sion coefficients reduced towards zero. In genetics, the 
use of such techniques is just starting to emerge, includ-
ing penalized logistic regression66,67 and least-angle 
regression68 for identifying gene–gene interactions69,70 
in binary traits.

A good overview of several machine-learning 
approaches for detecting gene–gene interactions is given 
by McKinney et al.31. For the remainder of this section, 
I focus on several methods that have become popular 
or seem to show promise for detection of gene–gene 
interactions or, more precisely, for detection of genes 
that might interact.

Recursive partitioning approaches. Recursive parti-
tioning approaches (BOX 2) have been used as an alter-
native to traditional regression methods for detecting 
the genetic loci and their interactions that influence a 
phenotypic outcome71–73. These approaches produce  
a graphical structure that resembles an upside-down tree 
that maps the possible values of certain predictor vari-
ables (for example, SnP genotypes) to a final expected 
outcome (for example, disease status). each vertex or 
node of the tree represents a predictor variable and 
there are arcs or edges from each node leading down to 
‘child’ nodes, in which each edge corresponds to a dif-
ferent possible value that could be taken by the variable 
in the ‘parent’ node. A path through the tree represents 
a particular combination of values taken by the predic-
tor variables that are present within that path. Recursive 
partitioning approaches do not include interaction vari-
ables per se in the model. Rather, the trees constructed 
allow for interaction in the sense that each path through 
a tree corresponds to a particular combination of values 
taken by certain predictor variables, thus including the 
potential interactions between them. The aim of tree-
based approaches therefore corresponds most closely 
to testing for association while allowing for interaction 
rather than testing for interaction per se. one limitation 
of recursive partitioning is that, because it conditions on 
the main effects of variables at the first stage and on the 
main effects conditional on previously selected variables 
at subsequent stages, pure interactions in the absence of 
main effects can be missed74.

Rather than using a single tree, substantial improve-
ments in classification accuracy can result from growing 
an ensemble of trees. A popular ensemble tree approach 
is the random forests approach75 (BOX 2), which has been 
used in several genetic studies76,77. Apart from the classi-
fication of future observations (which is not our focus of 
interest), the main result of a random forests analysis is a 
list of variable importance measures. These measure the 
effect of each predictor variable both individually and 
through multiway interactions with other predictor vari-
ables, and therefore have an advantage over a list of sig-
nificance values from single-locus association testing.

Random forests provide a fast algorithm that can be 
applied in parallel for measuring variable importance 
partly because, at each split, only a small random sub-
set of predictors is used. To allow each predictor the 
opportunity to enter the model and to make an accu-
rate prediction, one must carefully choose important 
parameters, such as the number of trees in the forest, the 
number of randomly chosen SnPs analysed at each node 
and the number of permutations used to assess variable 
importance. Ideally, one would repeat the analysis sev-
eral times to assess the sensitivity to the choice of these 
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Figure 1 | semi-exhaustive search of pairwise interactions between 89,294 snPs. I used the ‘--fast-epistasis’  
and ‘--case-only’ options in PLINK to analyse the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease and 
control samples. I used the same quality control procedures as the WTCCC to remove poor quality SNPs and samples 
before analysis. I additionally discarded 561 SNPs that had been analysed by WTCCC but were subsequently discarded 
on the basis of visual inspection of the SNP intensity cluster plots (J. Barrett, personal communication). To reduce the 
number of interaction tests to be performed, I selected a set of 89,294 SNPs that passed a single-locus p value threshold 
of 0.2. Analysis of the 89,294 SNPs on a single node of a computer cluster took 14 days. Unfortunately, neither SNP in the 
interaction detected by Emily et al.60 were included in my analysis, as neither had a single-locus p  ≤ 0.2. A | Results from 
‘--case-only’ analysis, in which SNP pairs were discarded if they were <1 Mb apart (panel a), <5 Mb apart (panel b), and 
<50 Mb apart (panel c). The default in PLINK is to exclude tests of pairs of SNPs that are less than 1 Mb apart. Even when 
extreme separations of 5 Mb or 50 Mb are enforced (panels b and c), we find a large number of apparently significant 
results. A closer inspection showed that in many cases, these significant results are due to correlation within the sample 
of cases between alleles at loci on different chromosomes. Given the general departure from the expected distribution, 
it seems likely that these significant case-only results are artefacts rather than genuine interaction effects. Panel d shows 
a Q–Q plot of all results from the ‘--fast-epistasis’ option with p < –0.0001. These results lie much closer to the expected 
line; only one result seems to show strong departure from the expected significance. The top-ranking results (those with 
χ2 > 35, as indicated by the dashed line on panel d are shown in Supplementary information S3 (table). Interestingly, 
most of the SNPs involved in the putative interactions show little single-locus significance, apart from rs4471699 on 
chromosome 16. This SNP was not reported as significantly associated by WTCCC1. B | Single-locus association results 
across chromosome 16. rs4471699 at position 30,227,808 shows the highest significance but is far removed from most of 
the significant results, which are situated close to nucleotide-binding oligomerization domain containing 2 (NOD2) 
(approximate position 49,297,083). Further investigation showed that this SNP had been excluded from the WTCCC 
analysis owing to poor genotype clustering (J. Barrett, personal communication), even though it passed the stated 
WTCCC exclusion criteria and was not present in the original list of additional exclusions I was given. It therefore seems 
likely that both the single-locus and interaction results at rs4471699 are false positives.
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parameters. An example of applying random forests to 
the WTCCC Crohn’s disease and control data using the 
Random jungle software package78 is shown in fIG. 2.

Multifactor Dimensionality Reduction method. A range 
of data-mining approaches have been used for the detec-
tion of interactions or potentially interacting variables 
in genetic association studies, including logic regres-
sion79,80, genetic programming81, neural networks54,55 and 
pattern mining82,83. one particularly popular method is 
Multifactor Dimensionality Reduction (MDR)8–10. MDR 
has been used to identify potential interacting loci in 
several phenotypes, including breast cancer8, type 2 
diabetes84, rheumatoid arthritis85 and coronary artery 
disease86, although to date it is unclear whether any of 
these identified interactions have been replicated in 
larger samples.

The MDR algorithm is described in BOX 3 and in 
detail elsewhere8–11,49. Rather than testing for interaction 
per se, MDR seeks to identify combinations of loci that 
influence a disease outcome, possibly by interactions 
rather than — or in addition to — by main effects. MDR 
reduces the number of dimensions by converting a high-
dimensional multilocus model to a one-dimensional 
model, thus avoiding the issues of sparse data cells and 
models with too many parameters that can cause prob-
lems for traditional regression-based methods. MDR 
classifies genotypical classes as either high risk or low 
risk according to the ratio of cases and controls in each 
class. This approach could be considered overly simplis-
tic, and improvements that embed a more traditional 
regression-based approach into the cell classification 
step, allowing application of the method to continuous 
as well as binary traits and adjustment for covariates, 
have been proposed87,88.

The main problem with MDR, as with other exhaus-
tive search techniques, is that it does not scale up to allow 
analysis of large numbers of predictor variables (for 
example, many loci from a GWA study)8,9. If an exhaus-
tive search for the best n-locus combination (within each 
of ten cross-validation replicates) is performed, anything 
more than a two-locus screen on more than a few hun-
dred variables will be computationally prohibitive. An 
additional problem with early versions of the widely used 
java implementation of the MDR software (but note that 
other software implementations exist11,88) is that it was 
not designed with genome-wide data sets in mind and 
thus could fail owing to memory and disc usage issues. 
However, these problems seem to have been addressed 
in the most recent version of the software.

For investigation of higher-order interactions, MDR 
is therefore perhaps best suited for use with small num-
bers of loci (up to a few hundred), which have perhaps 
been discovered from a candidate gene study or selected 
from a larger set of potential predictors using a prior 
processing or filtering step40. This step could be as simple 
as using a single-locus significance threshold, but that 
seems counter-intuitive if the goal is to detect interac-
tions in the absence of marginal effects. Perhaps a more 
appealing approach would be to use a measure of vari-
able importance that allows for possible interactions, 

Box 2 | Recursive partitioning approach

single classification tree
Recursive partitioning approaches are 
based on classification and regression 
trees111. Trees are constructed (see the 
figure) using rules that determine how well 
a split at a node (based on the values of a 
predictor variable such as a SNP) can differentiate observations with respect to  
the outcome variable (such as case–control status). A popular splitting rule is to use the 
variable that maximizes the reduction in a quantity known as the Gini impurity111,112 at 
each node. In the figure, SNP 3 maximizes the reduction in the Gini impurity at the 
first node and is therefore chosen for splitting (according to the genotype at SNP 3) 
the original data set of 1,000 cases and 1,000 controls into two smaller data sets. Once 
a node is split, the same logic is applied to each child node (hence the recursive nature 
of the procedure). The splitting procedure stops when no further gain can be made 
(for example, when all terminal nodes contain only cases or only controls, or when all 
possible SNPs have been included in a branch) or when some preset stopping rules are 
met. At this stage, it is usual to prune the tree back (that is, to remove some of the later 
splits or branches) according to certain rules111 to avoid overfitting and to produce a 
final more parsimonious model.

ensemble approaches: random forests
Rather than using a single classification tree, substantial improvements in 
classification accuracy can result from growing an ensemble of trees and letting them 
‘vote’ for the most popular outcome class, given a set of input variable values. Such 
ensemble approaches can be used to provide measures of variable importance, a 
feature that is of great interest in genetic studies and that is often lacking in 
machine-learning approaches. The most widely used ensemble tree approach is 
probably the random forests method75. A random forest is constructed by drawing 
with replacement several bootstrap samples of the same size (for example, the same 
number of cases and controls) from the original sample. An unpruned classification 
tree is grown for each bootstrap sample, but with the restriction that at each node, 
rather than considering all possible predictor variables, only a random subset of the 
possible predictor variables is considered. This procedure results in a ‘forest’ of trees, 
each of which will have been trained on a particular bootstrap sample of observations. 
The observations that were not used for growing a particular tree can be used as 
‘out-of-bag’ instances to estimate the prediction error. The out-of-bag observations 
can also be used to estimate variable importance in different ways including through 
use of a permutation procedure31,77,113.

The true model in which the important predictor variables act or interact to 
influence phenotype is somewhat obscured because it results from the predictions of 
many different classification trees, and so one might wish to follow a random forests 
analysis with another approach. For example, one might choose the top-ranking 
variables from a random forests analysis as input variables for a simple regression-based 
search, a standard classification and regression trees analysis or for analysis using an 
alternative data-mining procedure.

See refs 31,74,113 for a good summary of the approach, the available R software 
(the ‘randomForest’, ‘cforest’ and ‘party’ libraries) and a discussion of some of the 
limitations of the method.
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Figure 2 | Random Jungle analysis of 89,294 snPs. I used the software package Random Jungle78 to perform a 
random forests analysis of the 89,294 SNPs that passed a single-locus p value threshold of 0.2 in the Wellcome Trust 
Case Control Consortium (WTCCC) Crohn’s disease and control data. As Random Jungle, in common with many other 
machine-learning approaches, prefers not to have missing genotype data, the missing genotypes were imputed as  
the single most likely values on the basis of the genotype frequencies in the case–control data set. Analysis of the 
89,294 SNP set took approximately 5 hours, using 6,000 trees in the forest and √n = √89,294 randomly chosen 
variables at each node. a | Importance values from the Random Jungle analysis. These are clearly dominated by the 
result at rs4471699 on chromosome 16, which is likely to be a false positive. b | Results from Random Jungle analysis 
with SNP rs4471699 removed. Once this SNP is removed, the remaining SNPs are better distinguished, but it is unclear 
whether this analysis offers any greater insight than the single-locus analysis. c | Results from single-locus association 
analysis of all 6,113 SNPs using the trend test implemented in PLINK. In many cases, the highest ranking SNPs are in 
similar locations to (b), but with clearer significance in (c).

Bootstrap samples
These are data sets obtained 
by taking a random sample of 
the original data, usually with 
replacement. One then applies 
the same analysis as was 
applied to the real data. This is 
repeated many times, allowing 
one to assess the variability in 
results incurred owing to 
random sampling.

Frequentist
A statistical approach for 
testing hypotheses by 
assessing the strength of 
evidence for the hypothesis 
provided by the data.

such as the variable importance measure from a random 
forests analysis or from one of the alternative filtering 
methods described below.

ReliefF, Tuned ReliefF and evaporative cooling. one 
promising filtering algorithm that has been proposed40 is 
ReliefF89 or its modified version, Tuned ReliefF (TuRF)90. 
This approach uses a measure of proximity between 
observations (individuals) — which is calculated, for 
example, on the basis of the genome-wide genetic simi-
larity between individuals — to determine the nearest 
neighbours of each individual from within their own 
phenotype class and from within the opposite pheno-
type class. The difference in the value of each predictor 
variable between the pairs of neighbouring individuals, 
weighted negatively or positively according to whether 
the individuals come from the same or different phe-
notype classes, can be used to construct an importance 
measure for that variable90. The algorithm is simple and 
scalable, and should be applicable to large numbers of 
predictor variables and observations; an in-house C++ 
implementation was able to analyse 1 million loci in 200 
individuals in approximately 4 minutes90.

ReliefF and TuRF have both been implemented in 
the java version of the MDR software. one problem 
with ReliefF is that it can be affected by large back-
grounds of genetic variants that do not contribute to 
the phenotype74. This has motivated the development 
of an alternative approach, evaporative cooling74,91, 
which can be used to combine the strengths of ReliefF 
with those of random forests methods74.

An example of analysis using the java implementa-
tion of TuRF and MDR applied to the WTCCC Crohn’s 
disease data is shown in fIG. 3.

Bayesian model selection approaches
Bayesian model selection techniques92 offer an alterna-
tive approach for selecting predictor variables and the 
interactions between them that are the best predictors of 
phenotype. The key difference between Bayesian model 
selection and simple comparisons of nested regression 
models using frequentist (non-Bayesian) procedures is 
the specification of prior distributions for the unknown 
regression parameters as well as for a dimension param-
eter in a Bayesian approach. This dimension parameter 
specifies how many non-zero predictors are included 
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 Box 3 | multifactor dimensionality Reduction

The Multifactor Dimensionality Reduction (MDR) method is a constructive induction 
algorithm40 that proceeds as follows: the observed data is divided into ten equal 
parts and a model is fit to each nine-tenths of the data (the training data), and the 
remaining one-tenth (the test data) is used to assess model fit, thus using ten-fold 
cross-validation. Within each nine-tenths of the data, a set of n genetic factors is 
selected and their possible multifactor classes or cells are represented in n 
dimensional space. For example, for n = 2 diallelic loci, there are nine possible 
genotype classes or cells (Supplementary information S1 (box)). The ratio of the 
number of cases to the number of controls is estimated in each cell and the cell is 
labelled as either high risk if the case–control ratio reaches or exceeds a 
predetermined threshold (for example, ≥1) and low risk if it does not reach this 
threshold. This reduces the original n-dimensional model to a one-dimensional 
model (that is, one variable with two classes: high risk and low risk). The procedure is 
repeated for each possible n-factor combination and the combination that 
maximizes the case–control ratio of the high-risk group (that is, the combination 
that fits the current nine-tenths of the data best, giving minimum classification error 
among all n-locus models) is selected. The testing accuracy (which is equal to  
1 – prediction error) of this best n-locus model can be estimated using the remaining 
test data portion of the data. The whole procedure is repeated for each of the  
nine-tenth-one-tenth partitions of the data, and the final best n-locus model is  
the model that maximizes the testing accuracy or, equivalently, minimizes the 
prediction error. The cross-validation consistency is defined as the number of 
cross-validation replicates (partitions) in which that same n-locus model was chosen as 
the best model (that is, the number of replicates in which it minimized classification 
error). The average prediction error is defined as the average of the prediction errors 
over the ten cross-validation test data sets. Note that the prediction error of each 
individual cross-validation replicate refers to the prediction error of the n-locus model 
chosen as the best model in that replicate, which will not always correspond to the final 
best n-locus model.

In practice, rather than selecting a single value of n in each cross-validation replicate, 
one might consider all possible values of n up to a certain maximum; for example, all 
single-locus genotype combinations (n = 1), all two-locus combinations (n = 2) or  
all three-locus combinations (n = 3). One thus generates a best model within  
each cross-validation replicate as well as a final best model (with the associated 
cross-validation consistency and average prediction error) for each different value of n. 
The cross-validation consistencies and average prediction errors can be used to 
determine the best value of n that gives the highest cross-validation consistency or 
lowest average prediction error, and thus the resulting overall best model.

Burn-in period
In Markov chain Monte Carlo  
analysis, a period at the start of 
the computation in which the 
values taken by the parameters 
are ignored when constructing 
the posterior distribution.

Compositional epistasis
The blocking of one allelic 
effect by an allele at another 
locus.

Statistical epistasis
The average effect of substitu-
tion of alleles at combinations 
of loci, with respect to the 
average genetic background  
of the population.

Functional epistasis
The molecular interactions  
that proteins and other  
genetic elements have with  
one another.

in the regression equation. A posterior distribution for 
these parameters, given the observed data, can then be 
calculated using Markov chain Monte Carlo (MCMC)93 
simulation techniques, in which one traverses the space 
of the possible models (sets of parameter values), sam-
pling the outputs of the simulation run at intervals. 
Although MCMC is a flexible approach, it can require 
some care with respect to the choice of prior distribu-
tions, proposal schemes (determining how one moves 
between models) and the number of iterations required 
to achieve convergence.

lunn et al.56 proposed a Bayesian version of stepwise 
regression implemented in the software WinBuGS. 
This method focuses on the main effects of loci rather 
than interactions, but the inclusion of interaction effects 
is a straightforward extension. The main problem with 
this method is that it can deal with only a few hundred 
variables at most56 and does not scale to the large num-
bers of predictor variables that might be encountered 
in a genome-wide study. However, related approaches 
that can deal with data sets with more dimensions have 
been proposed94.

Bayesian Epistasis Association Mapping. A recently 
proposed MCMC approach that is specifically designed 
to detect interacting, as well as non-interacting, loci 
is Bayesian epistasis Association Mapping13, which is 
implemented in the software package BeAM. In BeAM, 
predictors in the form of genetic marker loci are divided 
into three groups: group 0 contains markers that are not 
associated with disease, group 1 contains markers that 
contribute to disease risk only by main effects and group 2  
contains markers that interact to cause disease by a satu-
rated model. Given prior distributions that describe the 
membership of each marker in each of the three groups 
and prior distributions for the values of the relevant regres-
sion coefficients given group membership, a posterior 
distribution for all relevant parameters can be generated 
using MCMC simulation. In addition to making infer-
ences in a fully Bayesian inferential framework, one can 
use the results from BeAM in a frequentist hypothesis- 
testing framework by calculating a ‘B-statistic’13 that 
tests each marker or set of markers for significant  
association with a disease phenotype.

BeAM can handle large numbers of markers (for 
example, 100,000 SnPs typed in 500 cases and 500 con-
trols13) although, in practice, some modification to the 
default parameters (namely the burn-in period, number 
of starting points and number of MCMC iterations) 
might be required to apply the method in a reason-
able period of time. BeAM cannot currently handle 
the 500,000–1,000,000 markers that are now routinely 
being genotyped in genome scans of 5,000 or more 
individuals. In theory, BeAM can account for linkage 
disequilibrium between adjacent markers13. However, 
it is unclear whether linkage disequilibrium between 
non-adjacent markers is fully accounted for, suggesting 
that reducing the number of markers in the marker set 
might be required, not only for computational reasons, 
but also to ensure that the markers are in low linkage 
disequilibrium. An example of applying BeAM to the 
WTCCC Crohn’s data is shown in fIG. 4.

Biological interpretation
The extent to which statistical interaction implies bio-
logical or functional interaction has been extensively 
debated in both the genetics19,21,95–99 and epidemiologi-
cal100–102 literature. one problem has been the inherently 
different nature of definitions of interaction and the use 
of a common term, epistasis, to encapsulate these defi-
nitions21,95 (Supplementary information S2 (box)). In a 
recent review, Phillips20 defines three different forms 
of epistasis — compositional epistasis, statistical epistasis 
and functional epistasis — that capture different con-
cepts that are often grouped together under this single 
term. A unified framework, the natural and orthogonal 
interactions (noIA) model, was proposed by Alvarez-
Castro and Carlborg98 for modelling both statistical 
and functional epistasis. However, Alvarez-Castro and 
Carlborg’s definition of functional differs from that of 
Phillips. The noIA model is actually a mathematical 
reparameterization of classical quantitative genetics 
models19 (Supplementary information S2 (box)). The 
noIA model allows the main effects to be defined with 
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Figure 3 | Multifactor Dimensionality Reduction (MDR) and Tuned ReliefF (TuRF) analysis of 6,113 snPs. I used the 
Java implementation of MDR to analyse 6,113 SNPs that passed a single-locus p value threshold of 0.01 in the Wellcome 
Trust Case Control Consortium (WTCCC) Crohn’s disease and control data, with missing genotypes imputed as the single 
most likely values on the basis of the genotype frequencies in the case–control data set. Examination of all pairwise 
combinations in the entire 6,113 SNP set was computationally prohibitive but analysis using a prior filtering step with 
ReliefF or TuRF, which reduced the data set for MDR analysis to 1,000 SNPs, was achievable. The best single-locus model 
identified was rs4471699, providing a testing accuracy of 0.5852 and cross-validation consistency of 10 out of 10.  
The best two-locus model identified was rs4471699 and rs2076756, providing a testing accuracy of 0.5879 and 
cross-validation consistency of 4 out of 10. MDR, in common with the other methods investigated, has clearly been 
dominated by the false positive result at rs4471699. Interestingly, however, this SNP is not selected by TuRF when 
filtering down the set of SNPs for MDR analysis to include only 100 SNPs. Using the 100 SNP set, the best single-locus 
model identified was rs931058, providing a testing accuracy of 0.5114 and cross-validation consistency of 5 out of 10.  
The best two-locus model identified was rs931058 and rs10824773, providing a testing accuracy of 0.5205 but 
cross-validation consistency of only 2 out of 10. Using the 100 SNP set, it was computationally feasible to fit three-locus and 
four-locus models; however, the resulting best models had cross-validation consistencies as low as for the two-locus model. 
I also found extreme sensitivity in both TuRF and MDR to the choice of the random number seed (data not shown), 
suggesting that, overall, these results should be interpreted with caution. A problem with MDR is that it outputs only the 
best model rather than a measure of significance for all of the models or variables considered. An idea of the importance 
of the variables can be determined by examining the ‘fitness landscape’ output from the program, shown here. a | Fitness 
landscape scores from TuRF analysis of all 6,113 SNPs. b | Fitness landscape scores from MDR analysis using the top 
1,000 out of 6,113 SNPs filtered using TuRF. c | Results from single-locus association analysis of all 6,113 SNPs using the 
trend test implemented in PLINK. It is unclear whether the fitness landscape results from TuRF (a) or MDR (b) offer any 
great advantage over standard single-locus analysis (c) with respect to determining the importance of variables.

respect to a different reference point and interaction 
effects to be defined with respect to different definitions 
of the independence of the main effects, thus allowing 
mapping of models between different experimental 
populations. As the whole issue in interaction modelling  
is how one defines the effect of a variable and, therefore, 
how one measures departure from the independence 
of effects (Supplementary information S2 (box)), this 
reparameterization does not seem to be biologically  
enlightening.

It may seem reasonable to assume that functional 
epistasis in the form of biomolecular or protein–
protein interaction is a ubiquitous component of the 
underlying biological pathways that determine disease 

progression7,103. However, this does not mean that epistasis  
will be detected as a mathematical or statistical inter-
action102,104, particularly if the variables that are being 
examined are, as in many cases, simply surrogates for 
the true underlying causal variants that are correlated 
with the causal variants because of linkage disequilib-
rium. The historical lack of success in genetic studies of 
complex disease can largely be attributed, not to ignored 
biological interactions7,61,67, but to underpowered studies 
that surveyed only a fraction of genetic variation. The 
recent success of GWA studies1–5 has shown that single-
locus association analysis in sufficiently large sample 
collections can reliably detect modest genetic effects that 
are robustly replicated105,106.
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Figure 4 | Bayesian epistasis Association Mapping (BeAM) analysis of 47,727 snPs. I used BEAM to analyse a set of 
47,724 SNPs that passed a single-locus p value threshold of 0.1 in the Wellcome Trust Case Control Consortium 
(WTCCC) Crohn’s disease and control samples. Analysis of the 47,724 SNPs took 8 days (with some modification to the 
default settings, most notably imposing a maximum of 5 × 10–7 Markov chain Monte Carlo (MCMC) iterations13 rather 
than using the default value of n2, in which n is the number of loci). I estimated that analysis of the 89,294 SNP set 
passing a single-locus p value threshold of 0.2 with a similar number of MCMC iterations would have taken more than 
5 weeks. a | ‘B-statistic’ p values for the 1,321 single-locus associations detected by BEAM. b | Results from single-locus 
association analysis of all 47,727 SNPs using the trend test implemented in PLINK. BEAM detects the same loci as are 
detected by single-locus analysis. BEAM additionally detects (with a quoted p value of 0.000000) four two-locus 
interactions, each involving an interaction of rs2532292 on chromosome 17 with a nearby SNP (either rs12150547, 
rs17689882, rs17650381 or rs17574824) within the same cluster. None of these SNPs shows particularly strong 
single-locus associations and so this putative interaction is intriguing. However, none of these pairs of SNPs showed 
significant (defined as a p < 0.0001) interaction in the PLINK ‘--fast-epistasis’ analysis. Closer inspection of these SNPs 
in the control sample indicated that they are in strong linkage disequilibrium (D′ > 0.99) with one another, suggesting 
that the detected interactions might correspond to marker dependencies owing to linkage disequilibrium, rather 
than to genuine interaction effects.

Although the extent to which biological interaction 
can be inferred from statistical interaction might be lim-
ited102, some interesting recent studies107–109 have focused 
on whether, given a strong prior biological model or set 
of models, one can use genetic or genomic data from 
outbred populations or inbred strains to assess the fit of 
the model and compare the fits of competing models. 
This is a more modest goal because it relies on a prior 
understanding or at least a strong biological hypothesis 
with respect to the action of the relevant predictors.

conclusions
As we have seen, there are numerous methods and an 
even larger number of software implementations  that 
allow investigators to examine or test for interaction 
between loci, using data that is currently generated from 
large-scale genotyping projects. Although the precise 
details of the methods differ, in many cases there are 
close conceptual links between the different approaches. 
The best way to understand these links might be pro-
vided by understanding the difference between test-
ing for interaction versus testing for association while  
allowing for interaction.

From a practical point of view, probably the main 
difference between the methods I have described is the 
computational time required to implement the analysis. 
As data sets become larger, the development of efficient 
computational algorithms that can be implemented in 
parallel will become more important. on this note, the 
use of filtering approaches that allow one to preselect a 
subset of potentially interesting loci to input into a more 
computer-intensive exhaustive or stochastic search 
algorithm might hold promise. In my application of 
various methods to the WTCCC Crohn’s disease data, I  
found that a semi-exhaustive search of two-locus inter-
actions implemented in PlInK12 and a random forests 
analysis implemented in Random jungle78 were the most 
computationally feasible of the methods examined. 
Bayesian epistasis Association Mapping implemented in 
BeAM13 was feasible only for a filtered data set and with 
some modification to the default recommended input 
parameter settings; it is unclear what effect, if any, this 
will have had on the reliability of the results. MDR was 
feasible for examining two-locus interactions in a filtered 
data set or for examining higher-level interactions in an 
even further reduced data set.

R E V I E W S

402 | june 2009 | VoluMe 10  www.nature.com/reviews/genetics

© 2009 Macmillan Publishers Limited. All rights reserved



1.  WTCCC. Genome-wide association study of 14,000 
cases of seven common diseases and 3,000 shared 
controls. Nature 447, 661–678 (2007).
In this study of 17,000 individuals, many new 
complex trait loci were identified and key 
methodological and technical issues related to 
GWA studies were explored.

2.  Easton, D. F. et al. Genome-wide association study 
identifies novel breast cancer susceptibility loci. 
Nature 447, 1087–1093 (2007).

3.  Frayling, T. M. et al. A common variant in the FTO 
gene is associated with body mass index and 
predisposes to childhood and adult obesity. Science 
316, 889–894 (2007).

4.  Plenge, R. M. et al. TRAF1‑C5 as a risk locus for 
rheumatoid arthritis — a genome-wide study. N. Engl. 
J. Med. 357, 1199–1209 (2007).

5.  Fellay, J. et al. A whole-genome association study of 
major determinants for host control of HIV-1. Science 
317, 944–947 (2007).

6. Culverhouse, R., Suarez, B. K., Lin, J. & Reich, T.  
A perspective on epistasis: limits of models displaying 
no main effect. Am. J. Hum. Genet. 70, 461–471 (2002).

7. Moore, J. H. The ubiquitous nature of epistasis in 
determining susceptibility to common human 
diseases. Hum. Hered. 56, 73–82 (2003).

8. Ritchie, M. D. et al. Multifactor-dimensionality 
reduction reveals high-order interactions among 
estrogen-metabolism genes in sporadic breast cancer. 
Am. J. Hum. Genet. 69, 138–147 (2001).
This was the original paper describing the popular 
MDR method.

9. Hahn, L. W., Ritchie, M. D. & Moore, J. H.  
Multifactor dimensionality reduction software for 
detecting gene–gene and gene–environment 
interactions. Bioinformatics 19, 376–382 (2003).

10. Moore, J. H. Computational analysis of gene–gene 
interactions using multifactor dimensionality reduction. 
Expert Rev. Mol. Diagn. 4, 795–803 (2004).

11. Chung, Y., Lee, S. Y., Elston, R. C. & Park, T. Odds ratio 
based multifactor-dimensionality reduction method for 
detecting gene–gene interactions. Bioinformatics 23, 
71–76 (2007).

12. Purcell, S. et al. PLINK: a tool set for whole-genome 
association and population-based linkage analyses. 
Am. J. Hum. Genet. 81, 559–575 (2007).

13. Zhang, Y. & Liu, J. S. Bayesian inference of epistatic 
interactions in case–control studies. Nature Genet. 
39, 1167–1173 (2007).
This paper proposed a new Bayesian approach for 
the detection of loci that might interact in the 
context of GWA studies. The related BEAM 
software package provides a computationally 
efficient implementation of the proposed algorithm.

14. Ferreira, T., Donnelly, P. & Marchini, J. Powerful 
Bayesian gene–gene interaction analysis. Am. J. Hum. 
Genet. 81 (Suppl.), 32 (2007).

15. Gayan, J. et al. A method for detecting epistasis in 
genome-wide studies using case–control multi-locus 
association analysis. BMC Genomics 9, 360 (2008).

16. Kraft, P., Yen, Y. C., Stram, D. O., Morrison, J. & 
Gauderman, W. J. Exploiting gene–environment 
interaction to detect genetic associations. Hum. 
Hered. 63, 111–119 (2007).

17. Fisher, R. The correlation between relatives on the 
supposition of Mendelian inheritance. Trans. R. Soc. 
Edin. 52, 399–433 (1918).

18. Hayman, B. I. & Mather, K. The description of genetic 
interactions in continuous variation. Biometrics 11, 
69–82 (1955).

19. Zeng, Z. B., Wang, T. & Zou, W. Modeling quantitative 
trait loci and interpretation of models. Genetics 169, 
1711–1725 (2005).
This paper includes an excellent discussion of 
issues in the definition and interpretation  
of interaction in quantitative genetic studies of 
derived populations (inbred lines).

20. Phillips, P. C. Epistasis — the essential role of gene 
interactions in the structure and evolution of genetic 
systems. Nature Rev. Genet. 9, 855–867 (2008).
An excellent review describing the differing 
definitions and interpretations of epistasis.

21. Cordell, H. J. Epistasis: what it means, what it doesn’t 
mean, and statistical methods to detect it in humans. 
Hum. Mol. Genet. 11, 2463–2468 (2002).

22. Cordell, H. J., Todd, J. A., Bennett, S. T., Kawaguchi, Y. 
& Farrall, M. Two-locus maximum lod score analysis of 
a multifactorial trait: joint consideration of IDDM2 and 
IDDM4 with IDDM1 in type 1 diabetes. Am. J. Hum. 
Genet. 57, 920–934 (1995).

23. Cox, N. J. et al. Loci on chromosomes 2 (NIDDM1) 
and 15 interact to increase susceptibility to diabetes 
in Mexican Americans. Nature Genet. 21, 213–215 
(1999).

24. Cordell, H. J., Wedig, G. C., Jacobs, K. B. &  
Elston, R. C. Multilocus linkage tests based on 
affected relative pairs. Am. J. Hum. Genet. 66, 
1273–1286 (2000).

25. Strauch, K., Fimmers, R., Baur, M. & Wienker, T. F. 
How to model a complex trait 2. Analysis with two 
disease loci. Hum. Hered. 56, 200–211 (2003).

26. Armitage, P., Berry, G. & Matthews, J. N. S. Statistical 
Methods in Medical Research 4th edn (Blackwell 
Science, Chichester, 2002).

27. McCullagh, P. & Nelder, J. A. Generalized Linear 
Models (Chapman & Hall, London, 1989).

28. Neuman, R. J. & Rice, J. P. Two-locus models of 
disease. Genet. Epidemiol. 9, 347–365 (1992).

29. Li, W. & Reich, J. A complete enumeration and 
classification of two-locus disease models. Hum. 
Hered. 50, 334–349 (2000).

30. Hallgrimsdottir, I. B. & Yuster, D. S. A complete 
classification of epistatic two-locus models. BMC 
Genet. 9, 17 (2008).

31. McKinney, B. A., Reif, D. M., Ritchie, M. D. &  
Moore, J. H. Machine learning for detecting  
gene–gene interactions: a review. Appl. 
Bioinformatics 5, 77–88 (2006).

32. Piegorsch, W. W., Weinberg, C. R. & Taylor, J. A.  
Non-hierarchical logistic models and case-only designs 
for assessing susceptibility in population-based case–
control studies. Stat. Med. 13, 153–162 (1994).
An important paper showing the use of case-only 
designs for detection of gene–environment 
interactions in epidemiological studies.

33. Yang, Q., Khoury, M. J., Sun, F. & Flanders, W. D. 
Case-only design to measure gene–gene interaction. 
Epidemiology 10, 167–170 (1999).

34. Weinberg, C. R. & Umbach, D. M. Choosing a 
retrospective design to assess joint genetic and 
environmental contributions to risk. Am. J. Epidemiol. 
152, 197–203 (2000).

35. Mukherjee, B. et al. Tests for gene–environment 
interaction from case–control data: a novel study of 
type I error, power and designs. Genet. Epidemiol. 32, 
615–626 (2008).

36. Zhao, J., Jin, L. & Xiong, M. Test for interaction 
between two unlinked loci. Am. J. Hum. Genet. 79, 
831–845 (2006).

37. Hoh, J. & Ott, J. Mathematical multi-locus approaches 
to localizing complex human trait genes. Nature Rev. 
Genet. 4, 701–709 (2003).

38. Mukherjee, B. & Chatterjee, N. Exploiting gene–
environment independence for analysis of case–
control studies: an empirical Bayes-type shrinkage 
estimator to trade-off between bias and efficiency. 
Biometrics 64, 685–694 (2008).

39. Yang, Y., Houle, A. M., Letendre, J. & Richter, A. RET 
Gly691Ser mutation is associated with primary 
vesicoureteral reflux in the French-Canadian population 
from Quebec. Hum. Mutat. 29, 695–702 (2008).

40. Moore, J. H. et al. A flexible computational framework 
for detecting, characterizing, and interpreting 
statistical patterns of epistasis in genetic studies of 
human disease susceptibility. J. Theor. Biol. 241, 
252–261 (2006).

41. Chanda, P. et al. Information-theoretic metrics for 
visualizing gene–environment interactions.  
Am. J. Hum. Genet. 81, 939–963 (2007).

42. Kang, G. et al. An entropy-based approach for testing 
genetic epistasis underlying complex diseases. 
J. Theor. Biol. 250, 362–374 (2008).

43. Dong, C. et al. Exploration of gene–gene interaction 
effects using entropy-based methods. Eur. J. Hum. 
Genet. 16, 229–235 (2008).

44. Zwick, M. An overview of reconstructability analysis. 
Kybernetes 33, 877–905 (2004).
An excellent overview of some of the principles and 
techniques used in information-theory modelling of 
frequency and probability distributions.

45. Cordell, H. J. & Clayton, D. G. A unified stepwise 
regression procedure for evaluating the relative effects 
of polymorphisms within a gene using case/control or 
family data: application to HLA in type 1 diabetes.  
Am. J. Hum. Genet. 70, 124–141 (2002).

46. Cordell, H. J., Barratt, B. J. & Clayton, D. G.  
Case/pseudocontrol analysis in genetic association 
studies: a unified framework for detection of genotype 
and haplotype associations, gene–gene and gene–
environment interactions and parent-of-origin effects. 
Genet. Epidemiol. 26, 167–185 (2004).
This paper describes a regression-based framework 
for the analysis of family-based data that allows 
tests of interaction that are similar to the tests 
often used in case–control studies to be performed.

47. Martin, E. R., Ritchie, M. D., Hahn, L., Kang, S. & 
Moore, J. H. A novel method to identify gene–gene 
effects in nuclear families: the MDR-PDT. Genet. 
Epidemiol. 30, 111–123 (2006).

48. Kotti, S., Bickeboller, H. & Clerget-Darpoux, F. 
Strategy for detecting susceptibility genes with weak 
or no marginal effect. Hum. Hered. 63, 85–92 (2007).

To date, few publications have incorporated interaction  
testing of GWA data. This is perhaps unsurprising as 
GWA studies have naturally focused on single-locus 
testing in the first instance. Curtis110 performed pair-
wise tests of association at 396,591 markers using 541 
subjects (cases and controls) from a genome-wide study 
of Parkinson’s disease. He found no significant epistatic 
interactions, possibly because of the small sample size 
or because of the interaction test that was used, which 
might have been more powerful if it was restricted to  
cases alone. Gayan et al.15 used the same data set  
to perform two-locus interaction testing using their inter-
action detection approach, hypothesis-free clinical clon-
ing. This approach involves testing for association while 
allowing for interaction under a set of prespecified fully 
penetrant disease models, and the tests are performed in 

several different subgroups of the data, which are con-
sidered as replication groups. For the Parkinson’s disease 
analysis, each subgroup consisted of approximately 90 
cases and 90 controls, which seems a very small sam-
ple size for this kind of analysis. unsurprisingly, little 
consistency between results was found when the analy-
sis was repeated using different partitions of the data. 
emily et al.60 reported four significant cases of epistasis 
in the WTCCC data using an approach that narrows the 
search space on the basis of experimental knowledge of  
biological networks.

Given the large number of GWA studies that have 
recently been or are currently being performed, it is clear 
that, for many, genome-wide interaction testing will be 
the natural next step following single-locus testing. We 
await with interest the results of these analyses.

R E V I E W S

nATuRe ReVIeWS | GeneTics  VoluMe 10 | june 2009 | 403

© 2009 Macmillan Publishers Limited. All rights reserved



49. Lou, X. Y. et al. A combinatorial approach to detecting 
gene–gene and gene–environment interactions in family 
studies. Am. J. Hum. Genet. 83, 457–467 (2008).

50. Gauderman, W. J. Sample size requirements for 
association studies of gene–gene interaction.  
Am. J. Epidemiol. 155, 478–484 (2002).

51. Hein, R., Beckmann, L. & Chang-Claude, J. Sample 
size requirements for indirect association studies of 
gene–environment interactions (G x E). Genet. 
Epidemiol. 32, 235–245 (2008).

52. Marchini, J., Donnelly, P. & Cardon, L. R. Genome-wide 
strategies for detecting multiple loci that influence 
complex diseases. Nature Genet. 37, 413–417 (2005).
This paper highlights the importance and feasibility 
of fitting interaction models using GWA data.

53. Chapman, J. & Clayton, D. Detecting association using 
epistatic information. Genet. Epidemiol. 31, 894–909 
(2007).

54. Motsinger, A., Lee, S., Mellick, G. & Ritchie, M. GPNN: 
power studies and applications of a neural network 
method for detecting gene–gene interactions in studies 
of human disease. BMC Bioinformatics 7, 39 (2006).

55. Motsinger-Reif, A. A., Dudek, S. M., Hahn, L. W. & 
Ritchie, M. D. Comparison of approaches for machine-
learning optimization of neural networks for detecting 
gene–gene interactions in genetic epidemiology. 
Genet. Epidemiol. 32, 325–340 (2008).

56. Lunn, D. J., Whittaker, J. C. & Best, N. A Bayesian 
toolkit for genetic association studies. Genet. 
Epidemiol. 30, 231–247 (2006).

57. Hoh, J. et al. Selecting SNPs in two-stage analysis  
of disease association data: a model-free approach. 
Ann. Hum. Genet. 64, 413–417 (2000).

58. Millstein, J., Conti, D. V., Gilliland, F. D. & 
Gauderman, W. J. A testing framework for identifying 
susceptibility genes in the presence of epistasis.  
Am. J. Hum. Genet. 78, 15–27 (2006).

59. Bochdanovits, Z. et al. Genome-wide prediction of 
functional gene–gene interactions inferred from 
patterns of genetic differentiation in mice and men. 
PLoS ONE 3, e1593 (2008).

60. Emily, M., Mailund, T., Schauser, L. & Schierup, M. H. 
Using biological networks to search for interacting loci 
in genomewide association studies. Eur. J. Hum. 
Genet. 11 Mar 2009 (doi: 10.1038/ejhg.2009.15).

61. Moore, J. H. & Williams, S. M. New strategies for 
identifying gene–gene interactions in hypertension. 
Ann. Med. 34, 88–95 (2002).

62. Golub, G., Heath, M. & Wahba, G. Generalized cross-
validation as a method for choosing a good ridge 
parameter. Technometrics 21, 215–224 (1979).

63. Velez, D. R. et al. A balanced accuracy function for 
epistasis modeling in imbalanced datasets using 
multifactor dimensionality reduction. Genet. 
Epidemiol. 31, 306–315 (2007).

64. Copas, J. B. Regression, prediction and shrinkage. 
J. Roy. Stat. Soc., Series B 45, 311–354 (1983).

65. Hastie, T., Tibshirani, R., & Friedman, J. H. The 
Elements of Statistical Learning: Data Mining, 
Inference and Prediction (Springer, New York, 2001).

66. Lee, A. & Silvapulle, M. Ridge estimation in logistic 
regression. Comm. Stat. Simul. Comput. 17,  
1231–1257 (1988).

67. Le Cessie, S. & Van Houwelingen, J. Ridge estimators in 
logistic regression. Appl. Stat. 41, 191–201 (1992).

68. Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least 
angle regression. Ann. Statist. 32, 407–499 (2004).

69. Park, M. Y. & Hastie, T. Penalized logistic regression 
for detecting gene interactions. Biostatistics 9, 30–50 
(2008).

70. Zhang, Z., Zhang, S., Wong, M. Y., Wareham, N. H. & 
Sha, Q. An ensemble learning approach jointly 
modelling main and interaction effects in genetic 
association studies. Genet. Epidemiol. 32, 285–300 
(2008).

71. Zhang, H. & Bonney, G. Use of classification trees for 
association studies. Genet. Epidemiol. 19, 323–332 
(2000).

72. Nelson, M. R., Kardia, S. L., Ferrell, R. E. & Sing, C. F.  
A combinatorial partitioning method to identify 
multilocus genotypic partitions that predict quantitative 
trait variation. Genome Res. 11, 458–470 (2001).

73. Culverhouse, R., Klein, T. & Shannon, W. Detecting 
epistatic interactions contributing to quantitative 
traits. Genet. Epidemiol. 27, 141–152 (2004).

74. McKinney, B. A., Crowe, J. E., Guo, J. & Tian, D. 
Capturing the spectrum of interaction effects in genetic 
association studies by simulated evaporative cooling 
network analysis. PLoS Genet. 5, e1000432 (2009).

75. Breiman, L. Random forests. Mach. Learn. 45, 5–32 
(2001).

76. Lunetta, K. L., Hayward, L. B., Segal, J. & 
Van Eerdewegh, P. Screening large-scale association 
study data: exploiting interactions using random 
forests. BMC Genet. 5, 32 (2004).

77. Bureau, A. et al. Identifying SNPs predictive of 
phenotype using random forests. Genet. Epidemiol. 
28, 171–182 (2005).

78. Schwartz, D. F., Ziegler, A. & König, I. R. Beyond the 
results of genome-wide association studies. Genet. 
Epidemiol. 32, 671 (2008).

79. Kooperberg, C., Ruczinski, I., LeBlanc, M. & Hsu, L. 
Sequence analysis using logic regression. Genet. 
Epidemiol. 21, S626–S631 (2001).

80. Kooperberg, C. & Ruczinski, I. Identifying interacting 
SNPs using Monte Carlo logic regression. Genet. 
Epidemiol. 28, 157–170 (2005).

81. Nunkesser, R., Bernholt, T., Schwender, H., Ickstadt, K. 
& Wegener, I. Detecting high-order interactions of 
single nucleotide polymorphisms using genetic 
programming. Bioinformatics 23, 3280–3288 (2007).

82. Li, Z., Zheng, T., Califano, A. & Floratos, A.  
Pattern-based mining strategy to detect multi-locus 
association and gene × environment interaction.  
BMC Proc. 1 (Suppl. 1), S16 (2007).

83. Long, Q., Zhang, Q. & Ott, J. Detecting disease-
associated genotype patterns. BMC Bioinform. 10 
(Suppl. 1), S75 (2009).

84. Cho, Y. M. et al. Multifactor-dimensionality reduction 
shows a two-locus interaction associated with type 2 
diabetes mellitus. Diabetologia 47, 549–554 (2004).

85. Julia, A. et al. Identification of a two-loci epistatic 
interaction associated with susceptibility to 
rheumatoid arthritis through reverse engineering and 
multifactor dimensionality reduction. Genomics 90, 
6–13 (2007).

86. Tsai, C. T. et al. Renin–angiotensin system gene 
polymorphisms and coronary artery disease in a large 
angiographic cohort: detection of high order gene–gene 
interaction. Atherosclerosis 195, 172–180 (2007).

87. Lee, S. Y., Chung, Y., Elston, R. C., Kim, Y. & Park, T. 
Log-linear model based multifactor-dimensionality 
reduction method to detect gene–gene interactions. 
Bioinformatics 23, 2589–2595 (2007).

88. Lou, X. Y. et al. A generalized combinatorial approach 
for detecting gene-by-gene and gene-by-environment 
interactions with application to nicotine dependence. 
Am. J. Hum. Genet. 80, 1125–1137 (2007).

89. Robnik-Sikonja, M. & Kononenko, I. Theoretical and 
empirical analysis of ReliefF and RReliefF. Mach. 
Learn. 53, 23–69 (2003).

90. Moore, J. H. & White, B. C. Tuning ReliefF for genome-
wide genetic analysis. Lect. Notes  Comp. Sci. 4447, 
166–175 (2007).

91. McKinney, B. A., Reif, D. M., White, B. C., Crowe, J. & 
Moore, J. H. Evaporative cooling feature selection for 
genotypic data involving interactions. Bioinformatics 
23, 2113–2120 (2007).

92. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. 
Bayesian Data Analysis (Chapman and Hall,  
London, 1995).

93. Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. 
Markov Chain Monte Carlo in Practice (Chapman and 
Hall, London, 1996).

94. Hoggart, C. J., Whittaker, J. C., De Iorio, M. &  
Balding, D. J. Simultaneous analysis of all SNPs in 
genome-wide and re-sequencing association studies. 
PLoS Genet. 4, e1000130 (2008).

95. Phillips, P. C. The language of gene interaction. 
Genetics 149, 1167–1171 (1998).
An important paper that describes the differing 
definitions and interpretations of epistasis used in 
different fields and the lack of equivalence between 
these definitions.

96. Moore, J. H. & Williams, S. M. Traversing the 
conceptual divide between biological and statistical 
epistasis: systems biology and a more modern 
synthesis. Bioessays 27, 637–646 (2005).

97. Cheverud, J. M. & Routman, E. J. Epistasis and its 
contribution to genetic variance components. Genetics 
139, 1455–1461 (1995).

98. Alvarez-Castro, J. M. & Carlborg, O. A unified model 
for functional and statistical epistasis and its 
application in quantitative trait loci analysis.  
Genetics 176, 1151–1167 (2007).

99. McClay, J. L. & van den Oord, E. J. Variance 
component analysis of polymorphic metabolic 
systems. J. Theor. Biol. 240, 149–159 (2006).

100. Thompson, W. D. Effect modification and the limits of 
biological inference from epidemiologic data. J. Clin. 
Epidemiol. 44, 221–232 (1991).

101. Siemiatycki, J. & Thomas, D. C. Biological models 
and statistical interactions: an example from 
multistage carcinogenesis. Int. J. Epidemiol. 10, 
383–387 (1981).

102. Greenland, S. Interactions in epidemiology: relevance, 
identification, and estimation. Epidemiology 20, 
14–17 (2009).
A useful commentary on the relationship between 
statistical and biological interaction assessed from 
epidemiological studies.

103. Gibson, G. Epistasis and pleiotropy as natural 
properties of transcriptional regulation. Theor. Popul. 
Biol. 49, 58–89 (1996).

104. Vanderweele, T. J. Sufficient cause interactions  
and statistical interactions. Epidemiology 20, 6–13 
(2009).

105. Todd, J. et al. Robust associations of four new 
chromosome regions from genome-wide  
analyses of type 1 diabetes. Nature Genet. 39, 
857–864 (2007).

106. Zeggini, E. et al. Replication of genome-wide 
association signals in UK samples reveals risk  
loci for type 2 diabetes. Science 316, 1336–1341 
(2007).

107. Sepulveda, N., Paulino, C. D., Carneiro, J. &  
Penha-Goncalves, C. Allelic penetrance approach as a 
tool to model two-locus interaction in complex binary 
traits. Heredity 99, 173–184 (2007).

108. Sepulveda, N., Paulino, C. D. & Penha-Goncalves, C. 
Bayesian analysis of allelic penetrance models for 
complex binary traits. Comp. Stat. Data Anal. 53, 
1271–1283 (2009).

109. Aylor, D. L. & Zeng, Z. B. From classical genetics  
to quantitative genetics to systems biology:  
modeling epistasis. PLoS Genet. 4, e1000029 
(2008).

110. Curtis, D. Allelic association studies of genome wide 
association data can reveal errors in marker position 
assignments. BMC Genet. 8, 30 (2007).

111. Breiman, L., Freidman, J. H., Olshen, R. A. &  
Stone, C. J. Classification and Regression Trees 
(Chapman and Hall/CRC, New York, 1984).

112. Bastone, L., Reilly, M., Rader, D. J. & Foulkes, A. S. 
MDR and PRP: a comparison of methods for high-
order genotype–phenotype associations. Hum. Hered. 
58, 82–92 (2004).

113. Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. 
Bias in random forest variable importance measures: 
illustrations, sources and a solution. BMC 
Bioinformatics 8, 25 (2007).
This paper gives an overview of some of the 
strengths and limitations of random forests 
analysis for measuring variable importance.

Acknowledgements
Support for this work was provided by the Wellcome Trust 
(Grant reference 074524). I thank J. Barrett for assistance 
with interpretation of the WTCCC Crohn’s results, and the 
WTCCC for making their data freely available. I also thank  
J. Moore for useful discussions of data-mining methods in 
general and MDR in particular, and K. Keen for pointing out 
the origins of the term epistasis.

dataBases
OMIM: http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=OMIM
Crohn’s disease

FuRtHeR inFoRmation
Heather J. Cordell’s homepage:  
http://www.staff.ncl.ac.uk/heather.cordell 
BEAM: http://www.people.fas.harvard.edu/~junliu/BEAM 
MDR: http://sourceforge.net/projects/mdr
Nature Reviews Genetics Series on Genome-wide 
association studies:  
http://www.nature.com/nrg/series/gwas/index.html
Nature Reviews Genetics Series on Modelling:  
http://www.nature.com/nrg/series/modelling/index.html
PLINK: http://pngu.mgh.harvard.edu/~purcell/plink
Random Jungle: http://randomjungle.com

suPPLementaRY inFoRmation
See online article: S1 (box) | S2 (box) | S3 (table)

ALL Links ARe AcTive in The onLine PDF

R E V I E W S

404 | june 2009 | VoluMe 10  www.nature.com/reviews/genetics

© 2009 Macmillan Publishers Limited. All rights reserved

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=266600
http://www.staff.ncl.ac.uk/heather.cordell/
http://www.people.fas.harvard.edu/~junliu/BEAM
http://sourceforge.net/projects/mdr
http://www.nature.com/nrg/series/gwas/index.html
http://www.nature.com/nrg/series/modelling/index.html
http://pngu.mgh.harvard.edu/~purcell/plink
http://randomjungle.com
http://www.nature.com/nrg/journal/v10/n6/suppinfo/nrg2579.html
http://www.nature.com/nrg/journal/v10/n6/suppinfo/nrg2579.html
http://www.nature.com/nrg/journal/v10/n6/suppinfo/nrg2579.html


Here is a remarkable fact about humans: we speak approx-
imately 7,000 mutually unintelligible languages around the 
world1. This means that a person plucked from one cor-
ner of the Earth is not able to communicate with another 
human in a different corner of the Earth, or often from 
next door. Apart from a few songbird species, and pos-
sibly some whales that learn their songs locally and show 
dialectical differences, this is unique among animals. For 
example, a chimpanzee or an elephant removed from its 
range and placed among any other chimpanzees or ele-
phants will know what to do and how to communicate.

Large as the number of extant human languages is, 
it has probably reduced from a maximum of perhaps 
12,000 to 20,000 different languages before the spread of 
agriculture2, and it pales in comparison with the possibly 
hundreds of thousands of different languages humans 
have ever spoken2. Elsewhere I have pondered the ques-
tion of why humans would evolve a system of commu-
nication that prevents them from communicating with 
other members of its species, and have suggested that 
human societies come to behave in ways that are not so 
different from that of biological species3. Whether or not 
that explanation is correct, the human tendency to sepa-
rate into distinct societies has given human language a 
geographical mosaic on which to play out its evolution. 
My interest here is to use the phenomenon of language 
diversity to understand the evolution of what turns out to 
be a remarkable culturally transmitted replicator, one with 
many of the properties we have come to expect of genes, 
but also with many of its own.

In this Review I shall first describe how a new and 
expanding field of phylogenetic and comparative studies 
of language evolution has made use of concepts, data and 
statistical modelling approaches that draw inspiration 
from genetics to exploit the genetic-like properties of 
language. I shall then move on to describe recent work 
in four areas of language evolution in which statistical 
modelling approaches have begun to return results. 
These include the reconstruction of language phyloge-
nies and their relationship to genetic trees; investigations 
of the rate, tempo and time-depth of language evolu-
tion; social influences on language; and studies of the  
structure of language.

My coverage of these topics will be selective, but is 
designed to give a flavour of what language evolution  
is like and of what is possible. I will not discuss the tricky 
and very large literatures on language origins or how we 
acquire it, whether our language skills are innate, or pos-
sible genetic influences on language abilities. Instead, I 
will treat language as evolving against what I will regard 
for sake of discussion as a more or less homogeneous 
genetic background in its human hosts.

Descent with modification
One of the best-known theories for the diversity of 
human languages is a creation myth. According to the 
bible story of the Tower of Babel, humans developed  
the conceit that they could construct a tower that would 
take them all the way to heaven. Angered at the attempt 
to usurp his control, God destroyed the tower. To ensure 

School of Biological Sciences, 
University of Reading,  
Reading, Berkshire RG6 6AH, 
UK; and Santa Fe Institute,  
1399 Hyde Park Road,  
Santa Fe, New Mexico, USA. 
e-mail:  
m.pagel@reading.ac.uk
doi:10.1038/nrg2560
Published online 7 May 2009

Languages
Linguists identify two 
languages as distinct when, 
according to various criteria, 
they become mutually 
unintelligible.

Human language as a culturally 
transmitted replicator
Mark Pagel

Abstract | Human languages form a distinct and largely independent class of cultural 
replicators with behaviour and fidelity that can rival that of genes. Parallels between 
biological and linguistic evolution mean that statistical methods inspired by phylogenetics 
and comparative biology are being increasingly applied to study language. Phylogenetic 
trees constructed from linguistic elements chart the history of human cultures, and 
comparative studies reveal surprising and general features of how languages evolve, 
including patterns in the rates of evolution of language elements and social factors that 
influence temporal trends of language evolution. For many comparative questions of 
anthropology and human behavioural ecology, historical processes estimated from linguistic 
phylogenies may be more relevant than those estimated from genes.

R E V I E W S

nATuRE REvIEWs | Genetics  vOLuME 10 | junE 2009 | 405

© 2009 Macmillan Publishers Limited. All rights reserved

mailto:m.pagel@reading.ac.uk


Phylogeny
A branching diagram 
describing the set of ancestral–
descendant relationships 
among a group of species or 
languages.

Borrowing
The acquisition of a new 
non-cognate word from 
another language.

Phoneme
Characteristically thought  
of as the smallest units of 
speech-sounds that are 
distinguished by the speakers 
of a particular language. 
Phonemes are not universal, 
but act as the fundamental 
building blocks to produce all 
of the words of a given 
language.

that it could not be rebuilt, God confused the workers by 
giving them different languages, leading to the irony that 
language exists to stop us from communicating.

Delightful as the Babel story is, ideas taken from 
the theory of evolution give us the conceit that we can 
improve on it. Darwin4 asserted that languages, like 
biological species, evolve by a process of descent with 
modification. If correct, we can expect human lan-
guages to form into family trees, known as phylogenies, 
which chart the history of their evolution in a manner 
analogous to that for biological species. It also means 
that the diversity of extant languages reflects the actions 
of various shared historical evolutionary processes, 
including features of the rate and tempo of linguistic 
evolution, timings and correlations, as well as the start-
ing points or ancestral languages. This raises the pos-
sibility that, far from settling for each language being 
a distinct object of creation, we can use the combina-
tion of phylogenetic trees of language along with sta-
tistical models of how languages evolve to detect and 
characterize the signature of these historical processes. 
In effect, we wish to discover what the past must have  
been like and how it evolved given what we now see.

TABLE 1 records analogies between the ways that 
genes and languages evolve, giving hope that the use of 
phylogenetic methods will succeed. Key among these 
analogous features is that both systems of replicators 
are digital, comprising discrete heritable units: the four 
nucleotides in the case of genes, and words in the case 
of language. Without this property neither system would 
retain fidelity through repeated bouts of transmission 
from parents to offspring (genes) or from teachers to 

learners (language), and historical signals would quickly 
be lost. Other features of language evolution that might 
be thought to vitiate its historical signature have analo-
gies in genetic systems. For example, languages can 
acquire new unrelated words by borrowing, and genes 
can arrive from bouts of lateral transfer. These influ-
ences often occur at lower rates in genetic systems, but 
do not represent a qualitative difference between genes 
and language.

Data and statistical modelling
The starting point for most comparative statistical investi-
gations of language evolution is a set of discrete characters 
that can be scored in each of the languages. These might 
include features of the syntax or structure of a language, 
other aspects of grammar, phonemes and, most obviously, 
lexical items or words. I shall confine my remarks here to 
the lexicon, although most of what I have to say applies 
to these other classes of discrete traits. Owing to pioneer-
ing work by Morris swadesh5 in the 1950s a common 
list of 200 words known as the fundamental vocabulary 
is available for a large number of the world’s languages 
(see the further information box for a link to an example 
of a swadesh list). This type of list contains words for 
things that are expected to be found in all languages, such 
as names for body parts, pronouns, common verbs and 
numerals, but excludes technological words and words 
related to specific ecologies or habitats. It can be thought 
of as like a list of universal genes. Other lists are possible, 
but swadesh’s has simply proven to be well chosen and 
widely available. His words tend to evolve slowly and are  
largely resistant to outside influences and borrowing6.

Table 1 | Some analogies between biological and linguistic evolution

Biological evolution Language evolution

Discrete heritable units (for example, nucleotides, amino acids and genes) Discrete heritable units (for example,  words, phonemes and syntax)

Mechanisms of replication Teaching, learning and imitation

Mutation (for example, many mechanisms yielding genetic alterations) Innovation (for example, formant variation, mistakes, sound changes, 
and introduced sounds and words)

Homology Cognates

Natural selection Social selection and trends

Drift Drift

Cladogenesis* (for example, allopatric speciation (geographic separation) 
and sympatric speciation (ecological or reproductive separation))

Lineage splits (for example, geographical separation and social 
separation)

Anagenesis‡ Linguistic change without split

Horizontal gene transfer Borrowing

Hybridization (for example, horse  with zebra and wheat with strawberry) Language Creoles§ (for example, Surinamese)

Correlated genotypes and phenotypes (for example, allometry|| and 
pleiotropy¶)

Correlated cultural terms (for example, ‘hasta’ and ‘spear’)

Geographic clines# Dialects and dialect chains

Fossils Ancient texts

Extinction Language death

Darwin noted many of these parallels in The Descent of Man4. Table is modified, with permission, from Nature REF. 26  (2007) Macmillan Publishers Ltd. All rights 
reserved. *Cladogenesis: the formation of separate groups by evolutionary splitting. ‡Anagenesis: the evolutionary process whereby one species evolves into 
another without any splitting of the lineage into separate groups or species. §Creole: a language that emerges in the second or later generations of the speakers of 
pidgins (which are the rudimentary languages that form when two language communities mix and seek a common basis for simple communication). Creoles are 
typically more complex than pidgins, although less so than fully developed languages. ||Allometry: the relationship between size and shape. ¶Pleiotropy: the action 
of a single gene on two or more distinct phenotypic characters. #Clines: a gradual change in phenotype in a species over a given area.
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Given a list of m meanings (such as hand, tree, I, 
walk, run) in n languages, a data set (M) can be written 
as a matrix, analogous to an alignment of gene sequences 
(BOX 1), but recording sets of cognate words. Linguists, 
using careful rules of sound correspondences within 
language families, can assign words from different lan-
guages into classes denoting words that derive from 
a common ancestral word, analogous to identifying 
homologous genes. The word ‘two’ in English and dos in 
spanish are cognate. The French fleur and Dutch blumen 
are not. Cognacy data, by recording evolved similarities 
and differences among languages, can be used to infer 
linguistic phylogenetic trees or to study features of lexi-
cal evolution itself 7. Phylogenies are of interest in their 
own right as descriptions of historical relationships, and 
they form the backbone of comparative studies that seek 
to understand the evolution of linguistic traits, and how 
other cultural traits have evolved and co-evolved7–9. For 
these wider cross-cultural studies, M can be broadened 
to include the cultural data.

statistical approaches apply models of evolution to 
characterize the probability of observing the data in M 
under various evolutionary scenarios10,11. A model that 
will be familiar to geneticists is the finite-state continu-
ous time Markov transition model (BOX 1). Often desig-
nated Q, it was introduced into studies of phylogenetic 
inference from gene sequences by Felsenstein12 along 
with the sum over histories logic. Applied to lexical data, 
this model estimates the instantaneous rates at which the 
words of one cognate class evolve into another unrelated 
set of words7. Other statistical approaches to analysing M 
include a ‘stochastic Dollo’ model13 that allows each new 
cognate class to arise only once on a tree of languages. 
The name is a conscious nod to the Belgian palaeon-
tologist Louis Dollo (1857–1931), who suggested that 
identical complex forms do not arise more than once in 
nature. A different stochastic treatment of M (described 
in REF. 14) allows for borrowing while estimating the 
underlying tree.

Parsimony or distance-based methods can be used 
instead of statistical approaches. However, statistical 
approaches, unlike the other methods, allow one to 
estimate directly parameters of the models of evolution 
(such as the qij transition rates in Q, see BOX 1) and to test 
among different models for the same data15. Whether 
inferring trees or studying the evolution of traits on trees, 
the common currency for testing models is a quantity 
known as the likelihood or L, defined as an amount pro-
portional to the probability of the data given the model16. 
It is conventionally written as L ∝ P (M | Q,T), where 
M and Q are as defined here, and T refers to the phy-
logenetic tree on which the data in M are presumed to 
have evolved. Likelihood methods regard the observed 
data as a fixed observation. This makes them particularly 
suited to historical inference problems such as those in 
linguistics, in which the observed data arise only once. 
Thus, the likelihood does not describe the probability 
that the events under study happened (they did) or that 
the model is true; it merely describes the ‘fit’ between the 
observed data and an inferred tree, or model (such as Q) 
of how a trait evolved on a tree.

 Box 1 | A linguistic alignment and a statistical model of evolution

Matrix of cognates
Whereas a gene sequence alignment identifies homologous sites in genes, a 
lexical ‘alignment’ identifies sets of cognate words, or words that descend from  
a common ancestral word. Let a matrix of these lexical alignments be denoted M 
(see also REFs. 7,9,19) to signify that it is a matrix of meanings (for example, hand, 
who and ear), and write M as:

The columns of numbers designate cognate classes, or words for a given 
meaning that have been identified as deriving from a common ancestral word  
(see text). The first column of M denotes a meaning for which four distinct 
cognate classes of words exist (0, 1, 2 and 3), the second column shows a meaning 
represented by two cognate classes, the third has k + 1 cognate classes, and the 
last column shows a meaning with a single cognate class — that is, all of the words 
for that particular meaning among the n languages derive from a common 
ancestral word. This matrix is the analogue to an aligned set of gene sequences, 
although all gene sequences have the same four states (twenty states if considering 
amino acids).

A statistical model
The data in M can be used to infer phylogenetic trees of languages, or perhaps to 
investigate some feature of lexical replacement or the change from one cognate 
class to another. A statistical model that is widely used in phylogenetic inference 
from gene sequences is written as:

0k

1k

01

k1

10

k0

The matrix Q is the central element of the finite-state continuous time Markov 
transition model (see text). Each q

ij 
term in this matrix describes the instantaneous 

rate of change from state i to state j over the short interval dt. In gene sequence 
data the states are the bases A, C, G or T, and Q is always a 4 × 4 matrix. If protein 
sequences are used, the states are amino acids and Q becomes a 20 × 20 matrix. 
Using lexical data, the states are the cognate classes, and a different Q needs to 
be estimated for meanings with different numbers of cognate classes. For 
phylogenetic inference with lexical data it is convenient to rewrite M such that  
all of the columns have the same number of cognate classes and thus a common  
Q can be estimated for the entire matrix, as is common for gene sequences.  
This is achieved by converting M to a binary form such that the k + 1 cognate 
classes for each meaning are written as k + 1 binary vectors, each one of which 
identifies a different cognate class as ‘1’ with the remainder designated ‘0’.  
Then, Q becomes a 2 × 2 matrix estimating a common rate at which new cognate 
classes occur.

The elements of the Q matrix are presumed to apply equally well to each site in a 
gene or protein sequence or, in the case of lexical data, to different words. To 
accommodate variation in the rates of evolution among sites or among words, the 
well-known gamma rate variability correction can be applied40. This correction 
amounts to multiplying each of the q

ij
 in Q by carefully chosen constants that are 

either less than or greater than one to achieve an overall slower or faster rate of 
evolution.

Outside the linguistic context M could contain any set of cross-cultural or other 
comparative data, and Q could then be used to estimate their evolutionary 
transitions (for example, REFs 8,9).
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Cognate
Two words are deemed cognate 
if they derive by a process of 
descent with modification from 
a common ancestral word.

Sum over histories
A mathematical technique  
that accounts for all possible 
ancestral states (that is, all 
possible histories) when finding 
the likelihood of observing the 
gene sequence or other data 
among extant species.

Parsimony
When applied to phylogenetic 
inference in a linguistic context, 
parsimony is a method that 
seeks the phylogenetic tree 
that implies the fewest number 
of changes among cognate 
classes.

Distance
As applied to phylogenetic 
inference in a linguistic context, 
distance is a set of methods 
that infer an underlying 
phylogenetic tree from a matrix 
of the pair-wise differences 
among all languages.

Likelihood
A statistical quantity defined as 
an amount that is proportional 
to the probability of observing 
some set of data given a 
particular model of how those 
data arose. In linguistic 
phylogenetic applications one 
finds the likelihood of the 
lexical data on the proposed 
tree given some model of how 
words evolve.

Maximum likelihood 
method
A statistical technique for 
finding the parameters of a 
model that make the observed 
data most likely or probable 
under that model.

Markov chain Monte Carlo
(MCMC). A statistical method 
for searching a complex 
high-dimensional space. As 
applied to phylogenetic 
inference in a linguistic context, 
MCMC methods return a 
sample of trees that are 
statistically representative of 
the trees that might arise from 
a given model of how words 
evolve.

The likelihood can be found by maximum likelihood 
methods — in this case many different trees or models 
are tried and the one that gives the largest value of L 
is preferred. Alternatively, Markov chain Monte Carlo 
(MCMC) methods17 are increasingly being employed to 
infer models and trees9,18. Rather than seeking a single 
‘best’ solution, MCMC methods attempt to derive a dis-
tribution of outcomes consistent with the data, called 
the posterior distribution. Posterior distributions can 
be formed for trees, for their likelihoods and for the 
parameters of the model of evolution. Their attraction 
is in providing a measure of the uncertainty in the esti-
mates of these various components. The posterior dis-
tribution of trees also provides the logical background 
against which to estimate models of evolution for other 
traits, this being a tidy way to account for the effects of 
uncertainty about the past.

Language trees and gene trees
Features of language trees. An early attempt to apply 
a likelihood sum over histories approach to languages 
made use of 7 Indo-European languages, 18 meanings and 
the finite-state Markov transition model Q described 
above19. The analysis yielded a phylogeny with the 
expected monophyletic groupings of Romance languages 
(spanish, French and Romanian) and Germanic lan-
guages (German, Dutch and English), and Welsh as an 
out-group. In the same year a tree of 77 Austronesian 
languages appeared, which was derived from parsi-
mony methods20. Holden21, also using parsimony and 
a 100-word swadesh list, inferred a tree of 93 Bantu 
languages.

Later analyses of the Bantu data with likelihood 
models returned more or less the same tree22. Gray and 
Atkinson23 applied the Markov transition model in a 
MCMC context to analyse 87 Indo-European languages 
using the entire swadesh 200-word list, estimating an 
ancestral age for Indo-European languages of between 
7,800 and 9,800 years. Trees of Papuan languages have 
been inferred from both typological and lexical fea-
tures of language24. Recently, Gray and colleagues have 
expanded their Austronesian sample to include over 400 
languages, inferring the tree using MCMC approaches 
and the Markov transition model25. Their tree sup-
ports a scenario for the origin of this group in Formosa,  
beginning approximately 6,000 years ago.

My interest here is less in the trees per se than in their 
characteristics. FIGURE 1 shows a consensus tree derived 
from the Bayesian posterior distribution of trees for 
87 Indo-European languages23,26. The tree recovers the 
expected clades of Romance, Germanic, slavic, Indo-
Iranian and Celtic languages, and suggests their deeper 
relationships. But what is remarkable about this tree is 
how tree-like it is, given all of the ways that a linguistic 
signal can be corrupted — most obviously by borrow-
ing. The numbers near to the nodes of this tree record 
the posterior support for that node, defined as the pro-
portion of trees in the posterior distribution in which 
that node was found. These posterior support values 
rival those found for many gene trees of a similar size27. 
Comparable degrees of posterior support are reported 

for the Bantu and Austronesian trees20,22, if not for the 
Papuan languages24. Techniques designed to reveal con-
flicting phylogenetic signals (for example, splitsTree 
and neighbour-net analyses)28, such as would arise 
from borrowing, typically reveal a healthy pattern of 
tree-like data29.

The Indo-European and Bantu trees reflect popula-
tion expansions or radiations into new areas, riding on 
the back of agriculture21,23,30, whereas the Austronesian 
tree records an expansion that may have been propelled 
in fits and starts linked to developments in sea-going 
boat technologies20,25. These population processes 
might contribute to the elegance of the three phylog-
enies by reducing the opportunities for borrowing of 
lexical items among the speakers of differing languages. 
Trees must always be carefully checked for borrowing, 
but unless it regularly occurs among distantly related 
languages, the broad structure of language phylogenies 
should be relatively unaffected31. Owing to a battle lost 
at Hastings, England, in 1066, English was bombarded 
by words of Romance origin and now approximately 
50% of its vocabulary derives from such stock. still, 
despite its history, English correctly appears among the 
Germanic languages in the I-E tree (FIG. 1), although 
linguists often place it closer to Frisian than the basal 
position it occupies in its portion of the Germanic 
clade.

Comparison of gene trees and language trees. If lan-
guages are not the ‘closed shop’ to outside influences 
that we have come to expect of eukaryotic organisms 
with sequestered germ lines, the strength of descent with 
modification in language trees shows that the cultural 
processes of language teaching and learning that trans-
mit language from one generation to the next can have a 
surprisingly high fidelity and can show resistance to out-
side effects. Although genes may only be replicated once 
or a few times between generations, vocabulary items are 
replicated by producing a sound that is copied by a lis-
tener and then produced anew in a cyclical process that 
may occur many tens of thousands of times (or more) 
per word per speaker. The opportunities for mutation 
and corruption of this signal, not to mention for innova-
tion and borrowing, are great and yet these simple lists of  
words can reconstruct the cultural history of groups  
of speakers spanning thousands of years.

Trees derived from language bear a range of relation-
ships to gene trees for the same population, and this is 
as we should expect. Cavalli-sforza32 demonstrated in 
the late 1980s that the major genetic groupings of peo-
ple around the world conform, with few exceptions, to 
their language groupings. This reveals, unsurprisingly, 
that people divided by large geographical distances drift 
apart genetically and linguistically. More fine-grained 
analyses reveal a different picture. sometimes language 
groups conform closely to genetic groups even on a small 
geographical scale33 and other times they do not34. This 
does not invalidate one kind of tree or elevate another. It 
tells us that some trees are good for tracking the move-
ments of genes, and others for tracking the movement 
of cultures.
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Figure 1 | tree of indo-european languages. Consensus tree of 87 Indo-European languages derived from the Swadesh 
list of 200 words5,23,26. Inner coloured ring identifies major clades as shown in the legend. The tree is rooted using ancient 
Hittite and Tocharian languages23,26. Branch lengths measure the expected number of lexical replacements (word changes) 
between two points on the tree. Numbers along branches are the Bayesian posterior probabilities of selected deep nodes 
of the tree, showing that words can resolve old relationships. Many of those nodes not labelled have high posterior 
support, although some are low and suffer from conflicting signals26. The outer colours identify a language’s sentence 
word order in terms of subject (S) verb (V) and object (O) (red bars), and whether it employs pre or postpositional 
modification of sentence objects (blue bars) (see text, data from REF. 69). Red, SVO or VSO; light red, SOV; blue, 
prepositional; light blue, postpositional. Celtic languages are VSO; Greek, German, Dutch, Byelorussian and others are 
sometimes classified as no dominant word order (NDO) (here coded red). Blue–red pairs and light blue–light red pairs 
conform to Greenberg’s58 prediction (see text and FIG. 5)
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Figure 2 | Rates of lexical replacement. a | Histogram of mean rates of lexical replacement in Indo-European 
languages for the 200 words in the Swadesh list, measured in units of numbers of new cognates per 1,000 years of 
evolution. Fastest to slowest rate represents over 100-fold difference. Values were found as the mean of the 
posterior distribution of the elements of Q matrices (see text) integrated over a Bayesian posterior distribution of 
trees26. Mean = 0.3 ± 0.18 new cognates per 1,000 years, median = 0.27, range = 0.009 to 0.93. b | Histogram of the 
word half-life estimates as derived from the rates of lexical replacement, measuring the expected amount of time 
before a word has a 50% chance of being replaced by a new non-cognate word. A half-life of >70,000 years is 
indicative of a transition rate that is compatible with observing a single cognate class (that is, no changes) over  
the entire ~130,000 ‘language years’ of the Indo-European tree26 (calculated as the total obtained by adding the 
number of years of evolution represented by the sum of the branches of the tree in FIG. 1). Existence of at least five 
such classes in Indo-European lexicon lends support to this estimate. Mean = 5,300 years, median = 2,500, 
range = 750 to 76,000.

Indo-European languages
A family of related languages 
that derive from a common 
ancestral language that 
probably arose in Anatolia 
around 8,000 years ago and 
then spread throughout 
Europe, India, and what is now 
Afghanistan, Pakistan and Iran.

Monophyletic
In a phylogenetic context, a 
group of species (or languages) 
is monophyletic if they derive 
from a common ancestor not 
shared with any other species 
(or languages). The Germanic 
languages are monophyletic 
and are distinct from the 
monophyletic group of 
Romance languages. 
Monophyly implies that the 
group has just one origin.

Bantu languages
A group of approximately 500 
languages that is part of the 
larger Niger-Congo language 
family. Bantu languages 
probably arose 3,000 years 
ago in West Africa, possibly 
close to present day 
Cameroon, and then spread 
east and then south eventually 
reaching to present day south 
Africa.

Clade
In the context of languages,  
a clade is a group of related 
languages.

Lexical replacement
The rate of lexical replacement 
is the rate at which a word is 
replaced by a new non-cognate 
word.

To understand why this is true, consider a thought 
experiment in which human genes flow among popu-
lations or even around the world largely invisible to 
the human phenotypes they inhabit (although there 
are some hints of genes and languages co-evolving35). 
Culture can, in principle, rest easily above this flow, as 
migrants adopt the local traditions, such that cultural 
variants and changes are independent of genetic changes. 
A situation similar to this has recently been reported for 
some Melanesian islanders34. Accordingly, phylogenetic 
trees derived from language may be preferable to gene 
trees in cross-cultural studies whenever the variables 
of interest are culturally transmitted8. These studies 
must separate the influence of common ancestry on a 
trait’s representation among cultures from independent 
instances of the acquisition or evolution of that trait8. For 
cultural data, such as bride wealth and dowry, matriliny, 
patriliny, modes of subsistence and even sex ratio36–38, 

the cultural phylogenetic tree provides the description 
of common ancestry that makes this separation pos-
sible. Linguists and anthropologists need not suffer 
from gene envy when it comes to building and using  
phylogenies.

In the next three sections I move away from inferring 
and interpreting language trees to discuss examples of 
how they have been used as the backbones of investiga-
tions into how features of language evolve, including 
rates of word evolution and the structure of languages, 
and to investigate social influences on the rates of  
lexical evolution.

Rates of evolution and time depth
Differing rates of word evolution. What English speak-
ers call a bird, the Italians call ucello, the French oiseau, 
the spanish pajaro, the Germans vogel, the Greeks pouli, 
and Caesar would have said avis. There are approxi-
mately 15 different cognate classes for ‘bird’ among the 
90 or so Indo-European languages. By comparison, all 
Indo-European language speakers use a related form of 
the word ‘two’ (dos, deux, due, zwei; the Latin is duo) to 
describe two objects. just as some sites in a gene sequence 
alignment evolve slowly and others rapidly, words in the 
Indo-European languages show ~100-fold variation in 
their rates of lexical replacement or in the acquisition of a 
new non-cognate form7,26 (FIG. 2a). These rates were found 
from estimating the qij in Q separately for each word in 
the swadesh list, integrating over a Bayesian posterior 
sample of Indo-European trees. slowly evolving words 
include ‘two’, ‘three’, ‘I’, ‘five’ and ‘who’, each of which has 
just a single cognate class among the Indo-European lan-
guages. By comparison, words such as ‘bird’, ‘tail’, ‘sand’, 
and ‘belly’ evolve more rapidly, with the word ‘dirty’  
having, at 46, the largest number of cognate classes.

The rates can be expressed as word half-lives7,19,26 

(FIG. 2b) corresponding to the expected amount of time 
before a word has a 50% chance of being replaced by a 
new non-cognate word. The median half-life is 2,000–
2,500 years. This may seem fast, especially when com-
pared to genes, but it is slower than the average rate at 
which new languages appear (which is approximately 
every 500–1,000 years for Indo-European languages). 
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Figure 3 | Rates of lexical replacement are stable 
among language families. Statistically estimated rates 
of lexical replacement for 110 words from the Swadesh 
list in the Indo-European (I-E) languages (data from  
REF. 26 and FIG. 2a) correlated with rank ordering of 
subjectively assessed rates of change for the same words 
in a worldwide sample of 14 languages families, 
correlation (r) = 0.65. The 14 language families assessed 
were Sino-Tibetan, Austroasiatic, Altaic, Austronesian, 
Australian, Khoisan, North Caucasian, Dravidian, 
Indo-European, Kartvelian, Afroasiatic, Tai, Uralic and 
Yenisean. The rank order list was taken from REF. 46.

Language year
In a phylogenetic context, each 
of the branches of a phylogeny 
represents some amount of 
evolution that occurs 
independently of the evolution 
in other branches. If the times in  
years that these branches 
represent are added together, 
the result records the total 
number of years of evolution 
that the tree represents; that 
is, the total number of 
language years.

Gamma correction
An elegant mathematical 
technique developed for 
characterizing the evolution of 
gene sequences that allows the 
nucleotides at different sites in 
the gene to evolve or be 
replaced at varying rates. The 
same technique can be applied 
to characterize the differing 
rates of evolution among 
lexical items.

Even the most rapidly evolving words have fewer cog-
nate classes than the number of languages. This means 
that, in general, words can achieve a measure of immor-
tality by escaping into a new language before a new form 
replaces them.

some words, like highly conserved genes, evolve at 
very slow rates. For each of the 5 most slowly evolving 
words there is a single cognate class in Indo-European 
languages. This is consistent with a half-life of over 
70,000 years26, a rate of evolution as slow as some 
genes39, and shows that a culturally transmitted rep-
licator can achieve a surprising fidelity. The sound an 
Indo-European language speaker makes to describe 
two objects is ancient, a related sound having been used 
by every speaker of an Indo-European language. If the 
unique time that each language has evolved is summed 
over languages this amounts to 130,000 or so language 
years that ‘two’ has remained stable. The same is true for 
the other words with a single cognate class. Even a word 
with a 6,000-year lexical half-life has a 25% chance of 
not changing in 11,500 years. Putting all these figures 
together, comparative linguists who seek evidence of 
very old linguistic signals are not simply chasing uni-
corns: there is every reason to expect that a linguistic 
signal exists that can identify relationships among  
distantly related language families.

Reasons for rate heterogeneity. Heterogeneity in the rates 
of evolution of words can be accommodated when infer-
ring language phylogenies in the same way as correction 
for differing rates of substitution in genetics (using the 
gamma correction)11,40. But at a deeper level we want to 
understand why this rate variation exists. We sought a 
general explanation for variation in rates of replacement 
by studying the ‘expression level’ of a word, that is, the 
frequency with which it is used in everyday speech26. 
speech is dominated by a small number of frequently 
used words, the remainder being used infrequently41,42. 
We found that slowly evolving words in Indo-European 
are those with higher expression levels; they are used 
more frequently in everyday speech26. Within English, 
frequently used words are more likely to be of Old 
English origin43. For example, irregular English verbs 
retain their ancestral morphology44,45 and are the more 
commonly used verbs.

speakers of different Indo-European languages use the 
various words in the swadesh list at similar frequencies in 
their everyday speech26. It might be that the way we use 
language and its structure means that some words inevi-
tably will be used more than others; it is, for example, dif-
ficult to avoid verbs and pronouns. If so, then frequency 
of use has potentially been a general historical influence 
in the world’s language families. FIGURE 3 plots the rates 
of lexical replacement we have reported for the Indo-
European languages26 against a list of 110 words that the 
late Russian comparative linguist sergei starostin identi-
fied as among the most stable in 14 language families from 
around the world46. The figure shows that slowly evolving 
words in Indo-European languages are also slowly evolv-
ing in the world’s other language families, and vice versa; 
remarkably, this suggests that rates of evolution have been 

conserved throughout human history. This result attests 
to the generality and historical influence of the frequency 
effect, and gives additional support to the search for deep 
language relationships.

Frequency of use might affect rates of lexical replace-
ment by altering ‘production errors’ — akin to the muta-
tion rate in genetics — or by altering the rate at which 
a new form is adopted in a speech community (akin to 
selection), or both26,47. Word use may be under strong 
purifying selection within populations of speakers, if 
only through the rule ‘speak as most others do’. It is dif-
ficult to understand how entire populations of speakers 
could otherwise agree on a single or small number of 
mostly arbitrary sounds to represent a given meaning. 
such a rule would have been advantageous in our history 
if speakers who make mistakes are disadvantaged. If I say 
that the war-like tribe coming over the hill numbers two 
when in fact I meant two hundred, there may be conse-
quences. some words may acquire connections in the 
cognitive or semantic space48, connections the strength 
or size of which may influence how rapidly words evolve. 
For example, hasta is the sanskrit word for hand, but 
among Latin speakers it became the word for spear. The 
sound ‘hasta’ may have been saved by the cognitive con-
nection between hand and spear. Questions surround-
ing why different words evolve at different rates are 
areas rich for discovery and are only just beginning to 
be investigated — they are likely to unlock fundamental 
aspects of how languages evolve.
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Figure 4 | Relationships between language and 
species distribution. North American human 
language–cultural groups (before European contact) 
and mammal species are distributed similarly across 
degrees of latitude. a | Numbers of languages and 
numbers of mammal species at each degree of north 
latitude in North America. The trends reflect the shape 
of the continent, being narrow in the south regions  
and growing wider at higher latitudes. Both trends 
peak at approximately 40°N, where North America is 
~3,000 miles wide. b | Densities of languages and 
mammal species, calculated as the number of each 
found at the specific latitude divided by the area of the 
continent for a 1° latitudinal slice at each latitude. 
Figure and data is reproduced, with permission, from 
Nature REF. 3  (2004) Macmillan Publishers Ltd. All 
rights reserved.

Linguistic universals
A set of features of language 
and relationships among those 
features that the great 
comparative linguist Joseph 
Greenberg proposed would be 
found in all or nearly all 
languages, or which would at 
least show statistical evidence 
for being linked.

Word order
The typical order of subjects, 
verbs and objects in a 
sentence.

Social effects and bursts of linguistic change
Are there external forces that affect linguistic change 
independently of the ways we use language in every-
day speech? Here I briefly discuss one way in which 
languages, by acting as markers of social identity, may 
influence the rate of linguistic evolution.

Languages are not evenly distributed geographically. 
Cultural groups are more densely packed in coastal than 
inland regions49,50. similarly, the density or number of 
different indigenous languages spoken in a given area 
of north America before European contact sharply 
increases in the more southerly regions of that conti-
nent, and is startling in its similarity to a plot of the 
density of different biological species from the same 

area3,51 (FIG. 4). Human cultural–linguistic groups seem 
to partition the landscape in a manner similar to species, 
and perhaps for similar reasons: where in the southerly 
regions the landscape is richer and more ecologically 
diverse, a greater variety of species seems able to coexist. 
The puzzle is that humans are all the same species, and 
so their higher densities in tropical regions may suggest 
a tendency for cultural groups to fission whenever the 
environment will support it3,51.

Gene flow is often reduced across linguistic bound-
aries52, and anthropologists speculate that language 
may be used to advertise affinity to particular social 
groups53,54. The eighteenth century American educa-
tor noah Webster put this view trenchantly at the time 
of American independence from Britain saying that 
“as an independent nation, our honor [sic] requires 
us to have a system of our own, in language as well as 
government”55,56. Phylogenetic trees of languages for 
Austronesian, Bantu and Indo-European languages all 
suggest that Webster was stating a general phenome-
non56. Extant languages with a rich history of language 
splitting events, such as that between the speakers of 
American and British English, have diverged more from 
their ancestral languages than extant languages with 
fewer splitting events in their pasts. A similar pattern 
is observed for genetic evolution among biological spe-
cies57. Humans seem to adjust languages at crucial times 
of cultural evolution, such as during the emergence of 
new and rival groups. Maybe there is some truth to the 
Babel myth after all.

Language structure
The late eminent American comparative linguist joseph 
Greenberg pioneered the study of the structural prop-
erties of languages, most famously seeking properties 
he called linguistic universals that could be found in all 
or nearly all known languages58,59. Languages can be 
classified according to structural properties of syntax, 
grammar and other features. Associations among these 
features reveal the internal structure of language and 
what combinations are possible. I give only the briefest 
treatment of this very large area, which is ripe for 
quantitative approaches60,61, confining my remarks to  
showing how language phylogenies are fundamental  
to understanding how language structures evolve.

One structural feature of language is the word order 
of its sentences. Of the six possible orderings of sub-
jects (s), verbs (v) and objects (O) in a sentence, two 
— svO and sOv — dominate the world’s languages, 
two others — vsO and vOs — account for ~10% of 
languages, and the remaining two — Osv and Ovs 
— are rare58,62. From analyses of the relative frequen-
cies of these differing orders among the world’s major 
language families, it has been suggested that the ances-
tral human language was sOv62 (M. Gell-Mann and  
M. Ruhlen, personal communication). One of 
Greenberg’s best-known universals was his pro-
posal that vsO and svO languages use prepositional 
phrases to modify sentence objects, whereas sOv lan-
guages tend to use postpositional phrasing. Counts of  
languages support Greenberg’s proposal63.
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Figure 5 | evolution of word order changes. a | Suggested evolution of word order 
changes in Indo-European (I-E) languages. Only well-supported transitions are shown. 
SOV, SVO and VSO refer to orderings of subject (S), verb (V) and object (O) in sentences 
(see FIG. 1), NDO is for languages categorized as having no dominant word order. The 
brackets indicate that the NDO category is questioned by some linguists, and the 
evolutionary relationship excluding it is represented by the light blue boxes. Statistical 
modelling9,67 reconstructs ancestral Indo-European word order as SOV. SVO later 
evolves from SOV (dashed arrow indicates transitions back to SOV that occur in 
Indo-Iranian languages), and SVO gives rise to VSO. SVO and (possibly SOV) may switch 
to NDO in case-marked languages such as German, Latin or Greek. This broad result is 
predicted in REF. 62, although NDO transitions need further study. There are many 
possible transitions between SVO and NDO within the Indo-European tree. Uncertainty 
about the true Indo-European phylogeny and the models of evolution is taken into 
account by integrating the estimates of the model’s parameters over a Bayesian sample 
of Indo-European trees. b | A diagram showing correlated evolution of word order — 
SOV versus VSO or SVO (VSO/SVO) including NDO — and pre versus postpositional 
phrasing (‘pre’ and ‘post’) to modify sentence objects (log Bayes factor test of 
association ~12, which indicates very strong support)9,67. This model reconstructs the 
ancestral state as SOV, post. Solid arrows indicate statistically supported evolutionary 
transitions, dashed arrows are not supported. Thickness conveys relative strength of the 
effect. Here, these arrows indicate that the derived state of VSO/SVO and prepositional 
phrasing evolves from the ancestral state either by adopting a different word order first, 
becoming SOV, pre, or by adopting a different positional phrasing first, becoming VSO/
SVO, post. Examples of each evolutionary process occur in Indo-European languages 
(FIG. 1). These intermediate states violate Greenberg’s58 predictions but are short lived, 
as indicated by the thick arrows pointing to the ancestral and derived states. The 
derived state seems to be stable in Indo-European languages. Data is taken from the 
World Atlas of Linguistic Structures71. The evolutionary relationships shown here might 
change owing to a lack of consensus on the classification of some languages on these 
two traits (see also FIG. 1).

Pre versus postpositioning
Whether a language places the 
phrase that modifies a 
sentence object before 
(preposition) or after 
(postposition) that object  
in the sentence.

Do phrases such as ‘I built a house’ and ‘I a house 
built’ (svO and sOv, respectively) owe their dominance 
to inherent properties of those systems or are they acci-
dental winners, having ridden on the backs of people 
who came to dominate the globe for some other reason. 
Why do English speakers use the prepositional phrase in 
‘I built a house for you’ rather than the postpositional ‘I 
built a house you for’? Is the pairing of word order and 
pre versus postpositioning a chance association or does 
it represent co-evolution of these two structural traits? 
If it represents co-evolution, which feature of language 
changes first or can either change? These kinds of ques-
tions have direct parallels in cross-cultural studies8,64 
and in comparative biology65, and must be studied using 
phylogenies. A co-evolutionary explanation would be 
favoured if the relationship arose independently many 
times in unrelated languages.

Phylogenetic statistical approaches. I illustrate a phy-
logenetic comparative approach to the word order and 
positional phrasing predictions with data for the Indo-
European languages (FIG. 1). Germanic, Romance and 
slavic languages are mostly svO, many Indo-Iranian 
languages and the ancient Tocharian and Hittite lan-
guages are sOv, and the Celtic languages are vsO. 
German, Greek, Bulgarian and the Indo-Iranian lan-
guage Domari are among a handful of Indo-European 
languages sometimes regarded as having no dominant 
word order (nDO). The historical evolution of these four 
states can be studied for the Indo-European tree using 
the finite-state Markov model in Q, and implemented 
using a technique called reversible jump MCMC66 that 
allows one to explore the space of possible models9,67.

The approach outlined above reconstructs the 
ancestral or proto-Indo-European language as sOv 
(FIG. 5a). Early in Indo-European language evolution 
sOv gave way to svO (or nDO, which then later 
resolved to svO) before reverting to sOv in the Indo-
Iranian languages. The Celtic vsO evolved from svO 
in the common ancestor to the Celtic, Romance and 
Germanic languages. There is an intriguing hint that 
languages can rapidly switch between a fixed or nDO 
word order, perhaps using case marking in place of 
order. The same methodology can then be used to test 
Greenberg’s proposal for a relationship between word 
order and pre versus postpositioning. Languages are 
scored as vsO or svO (vsO/svO) or as sOv, and also 
as prepositional or postpositional — yielding four pos-
sible combinations of paired states. The analysis finds 
the correlation Greenberg predicted (FIG. 5b). The analy-
sis also shows that languages can evolve from one of 
Greenberg’s preferred states to the other, by changing 
either of the individual traits first, but suggests these 
‘intermediate’ states are unstable. These results could 
only have emerged from a phylogenetic analysis and 
should be replicated in additional families. It should 
be straightforward to repeat this exercise for Bantu 
and Austronesian languages (R. Gray and M. Dunn,  
personal communication).

Once many of these structural features of language 
have been analysed for their correlations across lan-
guages it will be possible to construct network diagrams 
like those used to display protein or metabolic interac-
tion networks, in which links between pairs of features 
correspond to significant evolutionary correlations 
across species68. These have the potential to reveal the 
structural hubs and satellites of language — that is, fea-
tures that are highly connected and those that are not 
— and the traits that are most likely to be gained or lost 
over time.

Discussion
Phylogenetic and statistical methods have only begun 
to be used to study language evolution, but they have 
already returned important insights into its evolution. 
Much remains to be done. Models for phylogenetic 
inference could be improved by allowing words to alter 
their rates of change throughout the tree, and it should 
also be possible to automate cognacy judgements in a 
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manner analogous to automated gene sequence align-
ment. Greenberg’s58 proposals for linguistic universals 
describe dozens of associations among pairs of structural 
features, and these are suitable candidates for phyloge-
netic testing. At the level of lexicon, rather than structure, 
little is known about whether some words tend to change 
together, and whether these potential co-evolutionary 
linkages affect how these words evolve.

swadesh’s original vocabulary list comprises words 
that are used at a higher than average frequency, and 
so could be expanded to include less frequently used 
and consequently more rapidly evolving words. In a 
similar vein, although historically much emphasis has 
been placed on how words come to be replaced by new 
non-cognate words, there is room to study how words 
come to acquire new meanings, or how words gradu-
ally change their sounds while retaining their meanings 
and while remaining cognate. An important aspect of 
this process, in turn, relates the ways that languages are 
learned and transmitted within communities to the rates 
at which existing words (or other features of language) 
change or new words emerge and replace old ones69. 
This is analogous to attempts in evolutionary biology to  
describe how within-population processes give rise  
to differences between populations or species70.

Language trees provide the logical backbone on which 
to test these and many other anthropological questions. 
There is no doing comparative linguistics or compara-
tive anthropology without them, and new linguistic or 
anthropological research programmes should routinely 
make their construction a priority. Already projects 
such as the World Atlas of Linguistic structures71 or the 
Austronesian Basic vocabulary Database72 document 

hundreds of thousands of observations on language and 
these databases need to be developed in a similar way to 
GenBank and other genetic databases.

For geneticists, or for anyone interested in molec-
ular evolution, the parallels between linguistic and 
genetic evolution should be striking, and all the more 
so because language is a cultural rather than a physical 
replicator, without built-in error correction mechanisms 
and potentially subject to far greater effects of borrow-
ing and other influences that could corrupt its signal. 
Like genomes, the languages we observe today are the 
survivors of a long process of being tried out and tested 
by their speakers. Like genomes, we can speculate that 
we have retained those languages that adapted best to 
our minds73, and this may be the most obvious reason 
why we find them easy to learn and use.

For a language system to survive it must adapt as a 
coherent whole, and this governs the likely combina-
tions of language elements, be they words, grammar, 
syntax or morphology. These functional restraints on 
languages coupled with the observation of high fidel-
ity in the transmission of linguistic elements means that 
there are far fewer languages and less linguistic diversity 
than might otherwise be possible. Are some of these lan-
guages somehow better than others or somehow better 
suited to their own speakers, or do existing languages 
represent alternative and equally functional outcomes 
of the linguistic evolutionary process? It is the many dif-
ferences between what we see and what is possible that 
reveal the ways that languages adapt. How they do it and 
why is an area that holds great promise for furthering 
our understanding of this uniquely human trait as the 
complex and adaptively evolving system that it is74.
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Evolutionary developmental biology (evo–
devo) investigates the evolution of develop-
mental processes, aiming for a mechanistic 
understanding of phenotypic change1,2. 
Building on the analysis of model organ-
isms in developmental biology, evo–devo 
has seen a fruitful expansion in the last two 
decades and has successfully integrated vari-
ous comparative research strategies3–7. The 
investigation of several concepts, including 
modularity, redundancy, developmental 
constraints, evolutionary novelties and phe-
notypic plasticity, forms a framework for 
evo–devo. However, evo–devo suffers from 
a sometimes misguided selection of model 
organisms, often with a limited availability of 
technical tools8,9 and, most importantly, poor 
integration with other areas of evolutionary 
biology10. In this Opinion article, I argue that 
the future success of evo–devo in animals 
depends on two major technical and concep-
tual aspects: first, evo–devo has to concen-
trate on a few well-selected model organisms 
to allow the development of a sophisticated 
analytical tool kit for functional investiga-
tions; and second, evo–devo has to enhance 
its connections to other areas of evolutionary 
biology. Specifically, synthesis with popula-
tion genetics can reveal how phenotypic 
evolution is initiated at the microevolution-
ary level, and synthesis with evolutionary 
ecology can add an ecological perspective to 
these evolutionary processes.

Limiting the number of models
The principle that focusing on a few organ-
isms can be effective is demonstrated by the 
fact that the initial rise of developmental 
genetics was largely based on two inver-
tebrate model systems, Drosophila mela-
nogaster and Caenorhabditis elegans. The 
mechanistic understanding of development 
in these model organisms was also one of the 
important starting points for ‘modern’ evo–
devo. Initial evo–devo work, which focused 
mainly on the cloning and expression pattern 
analysis of genes homologous to D. mela-
nogaster developmental control genes11, 
pointed towards an unexpected conservation 
of developmental genes. This work was,  
however, largely descriptive.

In some new evo–devo model organisms, 
such as the insects Tribolium castaneum12 
and Nasonia vitripennis13 and the nematode 
Pristionchus pacificus14, researchers started 
to build a more sophisticated tool kit to 
investigate the mechanisms of evolutionary 
change in developmental processes (TABLE 1). 
However, the development of these methods 
— including forward genetics to allow gene 
knockout or knockdown, and transgenesis to 
allow experimental manipulation — proved 
challenging. Method development depends 
mostly on empirical optimizations, which 
are largely species specific, so protocols can-
not be transferred from one organism to 
another. Large research communities can 

overcome these challenges, but in evo–devo, 
with its relatively small research communities, 
method development is much harder.

One reverse genetics technology that has 
been used extensively in evo–devo in recent 
years to overcome technical limitations is 
RNAi. Although RNAi is becoming increas-
ingly accessible, it is not easily transferable 
to every organism, and even in C. elegans, 
in which it was originally described, it does 
not work in all cells and tissues. By defini-
tion, RNAi is biased towards candidate 
genes identified in model organisms and is 
a transient method. Both of these features 
influence the type of questions that can be 
addressed by RNAi and the accuracy of the 
conclusions. Two of the strongest applica-
tions of RNAi in model organisms are 
genome-wide RNAi screens and the genera-
tion of double mutants by performing RNAi 
in a mutant background, but these are not 
yet realistic in evo–devo systems.

Owing to the technical limitations 
discussed above, evo–devo has largely fol-
lowed the classical strategy of comparative 
morphology by analysing more organisms 
to provide unbiased phylogenetic sampling8. 
Particularly in the animal kingdom, with its 
deep branches and vast diversity of form  
and species, one can always look at new  
taxa and investigate their molecular inven-
tory. If species are selected from a phyloge-
netic perspective, such studies can increase 
our understanding of the molecular evolu-
tion of developmental control genes; this 
research strategy provides important insight 
into evolutionary patterns. However, this 
strategy also has a serious trade-off: because 
of the limited resources and small number of 
researchers, large phylogenetic sampling will 
often result in few studies per organism and 
a superficial understanding of each system. 
In addition, it has been argued that analysing 
species because of their phylogenetic posi-
tion rather than their conceptual value could 
leave the discovery of law-like generalities 
to chance8.

I argue that the analysis of the central 
concepts of evo–devo can best be achieved 
by the selection of a limited number of 
model organisms and the development  
of sophisticated made-to-measure tool kits: 
this principle has been highly successful 
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in developmental genetics and its applica-
tion in evo–devo seems equally promising. 
One reason for this optimism is that most 
conceptual themes in evo–devo arose from 
developmental genetics. Phenomena such 
as redundancy might be observed as wide-
spread15, and yet their significance in devel-
opmental processes and their contribution to 
evolution cannot be identified by the analy-
sis of a single species; their role in evo–devo 
requires comparative studies between related 
species of the same taxa. Classical model 
organisms are a valuable starting point for 
such studies; by comparing D. melanogaster 
with other insects, or C. elegans with other 
nematodes, one can use the mechanistic 
insights provided by classical models to 
investigate evo–devo themes.

Considerations for comparative studies. To 
ensure that the comparative studies intro-
duced above will be valuable for elucidating 
changes in development and the influence of 
these changes on evolution, two factors must 
be considered.

First, the species that are compared 
should be related in such a way that distinct, 
but still homologous, developmental pat-
terns can be studied. Changes in develop-
mental processes and mechanisms can then 
be identified as the cause of morphological 
diversity and novelty. By contrast, if organ-
isms are completely unrelated, comparisons 
often result in a descriptive list of their 
molecular inventories, thus not going 
much beyond the information that genome 
projects provide. The intellectual merit of 
comparative studies in unrelated organisms 
often rests with providing evidence for  
the co-option of conserved transcription 
factor modules and signalling networks in 
independent evolutionary lineages3.

Second, comparative studies should 
concentrate on mechanisms rather than, 
for example, gene conservation and gene 
expression. For transcription factors and 
cell–cell signalling molecules this is of 
particular importance because studies in 
model organisms constantly reveal that 
protein function is context dependent. 
One well-known example is Wnt signal-
ling, which has both β-catenin-dependent 
and β-catenin-independent functions16. 
Therefore, studies that rest on the analysis of 
expression patterns of shared components 
of such pathways can easily be misleading. 
Only functional investigations and compari-
sons between a developmental model system 
and an evo–devo ‘model system’ can reveal 
how mechanisms change during evolution 
to create phenotypic diversity or novelty 
(discussed further in the following section). 
Furthermore, such studies can indicate the 
importance of evo–devo concepts for study-
ing the evolution of developmental processes.

Taking these two considerations together, 
I argue that restricting the number of model 
organisms would help the field of evo–devo 
in its search for a theory. Developing a 
theory is of utmost importance for any dis-
cipline. This is clearly shown in evolutionary 
genetics, which builds on the framework 
of population genetics. In the context of 
developing a theory, it has been argued that 
signalling pathways and transcription factor 
modules could serve as a theoretical frame-
work for elucidating developmental changes 
in evolution1. As functional investigations 
of development require the generation of 
sophisticated methods (TABLE 1), the limi-
tation of the number of evo–devo model 
organisms is a logical consequence, and is 
a prerequisite for the long-term success of 
evo–devo.

The need for sophisticated tools
The importance of in-depth functional 
studies for achieving the aims of evo–devo, 
and by consequence limiting the number of 
organisms used, can be illustrated by case 
studies from nematodes and insects. These 
two cases indicate how the use of forward 
and reverse genetics can provide mechanistic 
insights into the evolution of development.

The nematode vulva. The nematode 
P. pacificus has been developed as a model 
system in evo–devo for comparison with 
C. elegans14 (TABLE 2). P. pacificus shares 
many technical features with C. elegans, such 
as a 3–4 day life cycle, simple culture and 
self-fertilization as mode of reproduction. 
Its hermaphroditic mode of reproduction 
makes forward genetics feasible, the P. pacifi-
cus genome has recently been sequenced17 
and a DNA-mediated transformation 
method allows genetic manipulation18.

Although P. pacificus shares technical 
features with C. elegans, many aspects of 
its development are strikingly different. 
Particular attention has been given to the 
development of the vulva, the nematode 
egg-laying structure. C. elegans vulva for-
mation is one of the best studied develop-
mental processes in animals19, providing 
a platform for mechanistic studies in evo–
devo20. Two hallmarks of C. elegans vulva 
formation are the generation of a vulva 
equivalence group and the induction of the 
vulva by the gonadal anchor cell. P. pacificus 
reveals striking differences with respect to 
both aspects of vulva development (BOX 1). 
Vulva induction requires different signalling 
pathways, and the reduction of the size of 
the vulva equivalence group in P. pacificus 
involves a transcriptional module that is 
absent from C. elegans, although it is oth-
erwise conserved among metazoans21,22. 
Recent genetic studies in just these two spe-
cies have allowed the molecular and mecha-
nistic basis for these evolutionary changes 
in pattern formation and induction to be 
identified.

Insect dorso–ventral patterning. The red 
flour beetle T. castaneum is one of a few 
insects that have been developed as a model 
organism for mechanistic investigation in 
evo–devo12. This beetle can be easily cul-
tured, has a short life cycle and is amenable 
to forward genetics analysis. The genome of 
T. castaneum has been sequenced, and an 
RNAi technique has been developed23. RNAi 
has proved particularly powerful and effi-
cient in this organism, providing a tool for 
the large-scale elucidation of gene function23.

Table 1 | Several central criteria for evo–devo model species

Methodology or approach Scientific aim

Forward genetics Unbiased identification of developmental 
mechanisms

reverse genetics (rNAi, small interfering rNA 
morpholinos)

Functional studies from gene predictions

Genome projects evolution of genome architecture

Transgenesis experimental manipulation of gene function

Phylogenetic reconstructions Directionality of evolutionary changes

Microevolutionary comparison of different 
isolates of the same species

Natural variation in developmental control 
genes

Genome-wide association studies

recombinant inbred line analysis

evo–devo in relation to ecology environmental influence on developmental 
control genes
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In T. castaneum embryogenesis, poste-
rior segments develop successively and two 
extra-embryonic membranes cover the egg. 
By contrast, in D. melanogaster all segments 
form simultaneously and extra-embryonic 
membranes are fused to the amnioserosa24 
(BOX 2). RNAi studies of known dorso–
ventral patterning genes have shown strik-
ing differences between T. castaneum and 
D. melanogaster in the function of individual 
genes and of genetic networks (BOX 2). In 
particular, gene duplications and subfunc-
tionalization are crucial for extra-embryonic 
membrane formation and dorso–ventral 
patterning25–28.

Structure–function dualism. The genetic 
experiments in T. castaneum and P. pacifi-
cus described above, and others like them13, 
indicate that the exact mechanisms by 
which developmental control genes work 
can change rapidly during the course of 
evolution. For example, homologous genes 
can assume different functions in differ-
ent species so that elimination of these 
genes results in different phenotypes22,28. 
Also, some developmental control genes 
are present in one organism but not in 
another21, and genes that are duplicated 
during the course of evolution can undergo 
subfunctionalization in individual evolu-
tionary lineages26. Therefore, comparative 
studies between phylogenetically related 
species can reveal how induction, pattern 
formation and segmentation evolve and 
contribute to the generation of evolution-
ary novelty. The examples of the nematode 
vulva and insect embryogenesis also show 
how homologous characteristics — char-
acteristics that are shared because of a 
common ancestry — can be uncoupled 
at different levels: although the cells that 
form the nematode vulva and the organ 
itself are homologous, the genes regulating 
the underlying molecular processes are not 

necessarily homologous29,30. This allows 
deBeer’s proposal, that homologous struc-
tures can be built by different genes31,32, to 
be tested at a molecular level29.

Genetic experiments give insights into 
how the function of a homologous gene 
can change during evolution. Isolation of a 
known gene in a new species or expression 
studies do not allow us to identify function 
and potential functional alterations dur-
ing the course of evolution; this requires 
specific tools, such as forward and reverse 
genetics. The genes zerknüllt and Toll, for 
example, are both expressed during dorso–
ventral patterning in D. melanogaster and 
T. castaneum, but their differing functions 
were only revealed by genetic manipula-
tion experiments28. Although this conclu-
sion is worthy in itself, it also provides an 
additional argument for the selection of a 
limited number of evo–devo model systems 
and the development of functional tools in 
these species.

The future of evo–devo models
The T. castaneum and P. pacificus case 
studies show how the use of new models 
can give novel insights into evo–devo. 
Therefore, going beyond the classical 
model systems can be of value. T. casta-
neum and P. pacificus are two evo–devo 
models that have a sophisticated tool kit — 
but how many species should there be? The 
number of species worked on in evo–devo 
is constantly changing, with species being 
added and being removed: a recent mono-
graph provides a detailed list of ‘emerging 
model organisms’33. In some cases these 
organisms have received special attention 
because they offer the analysis of themes 
that have not received particular attention 
in classical models, such as regeneration, 
which can be efficiently studied in planar-
ians and ascidians34,35. Similarly, some 
themes in evo–devo can only be studied 

in a particular species, or group of species. 
under such circumstances, alternative 
models should also be used. But in the 
more general evo–devo context most con-
cepts are based on widespread phenomena. 
For example, redundancy, phenotypic 
plasticity and developmental constraints 
are found in most organisms, and their 
role in evo–devo can therefore be studied 
in several systems if the appropriate tools 
are available. Thus, broad phylogenetic 
sampling is not a necessary prerequisite for 
studying the mechanisms behind impor-
tant evo–devo concepts. With the two cri-
teria identified above, namely the technical 
considerations and the need to compare 
the phylogenetic relationship of the evo–
devo and the classical model organism, 
a realistic starting number of evo–devo 
model species should not be much higher 
than a dozen because the long-term value 
of a species depends on its conceptual 
merit (TABLE 2).

Implications for the funding of evo–devo 
research. Another sensitive issue for evo–
devo studies is research funding. Relative to 
comparative morphology, one of its intel-
lectual forerunners, research in evo–devo 
requires substantially more investment. An 
emerging consequence is, therefore, the 
problem of securing funding for evo–devo 
in the modern life sciences, which largely 
aim to address applied research questions. 
This difficulty arises when evo–devo studies 
are compared with mechanistically driven 
applied research projects. A second signifi-
cant problem is obtaining the initial funding 
for technology development in new model 
organisms. I argue that evo–devo projects 
that focus on functional studies are the most 
likely to be successful in competition with 
other research fields. In addition, allocation 
of research funds for technology develop-
ment, as has been seen for comparative 

Table 2 | A selection of emerging evo–devo model systems with genetic tools in the vicinity of classical model organisms 

classical model organism evo–devo model evo–devo themes Refs

Drosophila melanogaster 
(arthropod)

Tribolium castaneum segmentation, appendix formation 12,26,28

Nasonia vitripennis segmentation 13

Daphnia pulex response to environmental variation 58

Caenorhabditis elegans 
(nematode)

Caenorhabditis briggsae sex determination, convergent evolution 63

Pristionchus pacificus Pattern formation, induction 14,20–22

Zebrafish Astyanax mexicanus Developmental and morphological response to environmental variation 54

sticklebacks Developmental and morphological response to environmental variation 64

Hydra (cnidarian) Nematostella vectensis evolution of body plan, ecological evo–devo 53

Arabidopsis thaliana (higher plant) Antirrhinum (snapdragon) Flowering 65
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Box 1 | Vulva induction in C. elegans and P. pacificus

In Caenorhabditis elegans the vulva is a derivative of the ventral epidermis, which consists of 12 
ectoblasts, named P1.p–P12.p according to their antero–posterior position19 (see the figure, part a). 
In wild-type animals, the vulva is formed from the progeny of P5.p–P7.p. P6.p has the primary fate 
and generates eight progeny (represented by a blue oval) and P5.p and P7.p have the secondary 
fate and form seven progeny each (represented by red ovals). P3.p, P4.p and P8.p have the  
tertiary fate (represented by yellow ovals). These cells are competent to form vulval tissue, but 
remain epidermal under wild-type conditions. The remaining ectoblasts (light grey ovals) fuse with 
the hypodermis and are not competent to form part of the vulva. P12.p is a special cell called 
hyp12, and forms part of the rectum. The vulva equivalence group, consisting of P3.p–P8.p, is 
located in the central body region and is specified by the homeobox (Hox) gene lin‑39. In 
C. elegans lin‑39 mutants, positional information for the formation of the vulva equivalence group 
is missing, and P3.p–P8.p fuse with the hypodermis. C. elegans vulva induction depends on a signal 
from the anchor cell (AC, green circle) of the somatic gonad (dark grey oval). Ablation of the AC at 
birth is sufficient to prevent vulva induction and mutations in the epidermal growth factor (EGF) 
family member lin‑3 result in a vulvaless phenotype.
As in C. elegans, the Pristionchus pacificus vulva forms from the ventral epidermis, which is 
generated by homologous precursor cells, P1.p–P12.p (see the figure, part b). In P. pacificus, 
however, P1.p–P4.p and P9.p–P11.p die of programmed cell death and reduce the size of the  
vulva equivalence group to four cells20. In contrast to C. elegans, P3.p and P4.p are unable to form 
part of the vulva in P. pacificus because they die early in development. P5.p–P7.p have a secondary–
primary–secondary pattern, as in C. elegans, and P8.p is a special epidermal cell (light grey oval), 
which is designated a quaternary cell fate. The vulva equivalence group, although reduced in size, 
is also formed by positional information of the Hox gene lin‑39. In P. pacificus lin‑39 mutants, the 
vulva equivalence group is not formed and P5.p–P8.p die of programmed cell death. The reduction 
of the size of the vulva equivalence group in P. pacificus involves the transcription factor hairy21. In 
hairy mutants, P3.p and P4.p survive and form a vulva equivalence group with a pattern that is 
reminiscent of the pattern in C. elegans. Genetic and biochemical studies showed that, in 
P. pacificus, HAIRY and GROUCHO form a heterodimer that downregulates the activity of lin‑39 in 
P3.p and P4.p. Surprisingly, there is no 1:1 orthologue of hairy in the C. elegans genome. Moreover, 
vulva induction in P. pacificus requires multiple cells of the somatic gonad instead of only one, as is 
the case in C. elegans. Mutations in the β-catenin-like gene bar‑1 in P. pacificus result in a vulvaless 
phenotype, indicating that Wnt signalling controls vulva induction. Indeed, genetic studies 
showed a redundant role of several Wnt ligands, which are expressed in the somatic gonad and 
the posterior region of the animal (arrows)22.

genomics, could further help evo–devo to 
succeed in a world of limited funds. Specific 
funding allocation could, for example, target 
the exploration of new species to extend the 
number of model systems over a longer time 
period. Together, seeking funding for func-
tional studies and technology development 
might even result in a gain of funding for 
evo–devo overall.

integration with evolutionary theory
In addition to practical considerations 
regarding the number of model organisms 
and the development of appropriate analyti-
cal tools, the interaction of evo–devo with 
other research areas needs to be re-consid-
ered to ensure future successes in the field. 
Specifically, I argue that more integration 
with evolutionary biology would be mutu-
ally beneficial (TABLE 1). The relationship 
between development and evolution has 
changed several times in the past 150 years 
(discussed in rEf. 36). Currently, there is 
growing consensus that development has 
to be integrated into evolutionary theory, 
because the evolution of form and the 
generation of morphological novelty are of 
utmost importance in a general philosophi-
cal framework of biology. However, work-
ing solely within the conceptual framework 
of evo–devo results in a gene-centred and 
development-centred perspective that lacks 
interrelationships with other areas of evolu-
tionary biology. If evo–devo wants to estab-
lish itself as a part of evolutionary theory, it 
has to find a suitable way of incorporating 
evolutionary thinking and recent advances, 
such as genomics10. Specifically, I argue that 
a synthesis with population genetics and 
evolutionary ecology is required.

A synthesis with population genetics. Why 
are developmental control genes conserved 
at the sequence level, when their functions 
can change? This question and the original 
observations that led to it are important 
because they help to distinguish, in the 
evo–devo context, between the contrast-
ing theories of neo-Darwinism and neutral 
evolution. In neo-Darwinism, positive (that 
is, directional) selection is thought to be 
the major mechanism driving the change 
of allele frequencies and it predicts that 
genes would not be conserved among spe-
cies37,38. By contrast, Kimura’s neutral theory 
of molecular evolution proposes that the 
majority of mutations in non-coding areas 
of the genome are selectively neutral or 
nearly neutral, whereas most mutations in 
genes are selectively deleterious39. The neu-
tral theory predicts that in coding regions 
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Box 2 | Dorso–ventral patterning in D. melanogaster and T. castaneum

Drosophila melanogaster is a long germ band insect that forms all body segments simultaneously 
during the blastoderm stage24 (see the figure, left panel). By contrast, Tribolium castaneum is a 
short germ band insect in which posterior segments develop successively24 (see the figure, right 
panel). As a result, the extra-embryonic membranes differ between D. melanogaster and 
T. castaneum. T. castaneum has two extra-embryonic membranes: the serosa, surrounding the 
complete embryo, and the amnion, covering the embryo proper on the ventral side. In 
D. melanogaster, both membranes are fused to an amnioserosa, which covers the embryo only at 
the dorsal side. Dorso–ventral patterning and extra-embryonic membrane formation require 
homologous genes that have divergent functions. Mutations in the homeobox transcription factor 
zerknüllt (zen) in D. melanogaster result in the replacement of the amnioserosa by ectodermal 
tissue25. T. castaneum contains two zen genes, zen1 and zen2, and RNAi experiments revealed sub-
functionalization of these genes26. RNAi against zen1 results in the absence of the serosa and an 
expansion of the germ rudiment towards the anterior, indicating that zen1 acts in 
antero–posterior development and specifies the border between the embryonic and 
extra-embryonic tissue26. In D. melanogaster, the loss of the transmembrane receptor Toll results in 
completely dorsalized embryos, whereas RNAi against T. castaneum Toll results in the absence of 
the central nervous system and the amnion. These differences reflect the different regulatory 
linkage of signalling networks in D. melanogaster and T. castaneum28.
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purifying selection dominates over posi-
tive selection and, as a result, genes should 
be conserved over large evolutionary time 
spans39. The evolutionary conservation of 
developmental control genes — as indicated 
by studies in evo–devo — strongly supports 
Kimura’s neutral theory.

Recent advances in population genetics 
have come through comparative genomics, 
with genome sequencing projects revealing 
an enormous amount of natural variation10. 

But is natural variation also seen in develop-
mental control genes? How do developmen-
tal control genes change in microevolution? 
More generally, are non-adaptive forces 
important for developmental evolution? 
Work at the interface between population 
genetics and evo–devo will indicate  
the contribution of natural variation to the 
evolution of development. This requires  
the research portfolio of population genetics 
to be added to evo–devo10,40 (TABLE 1).

The comparison of very closely related 
species and independent isolates of the 
same species can indicate to what extent 
developmental processes evolve at the 
microevolutionary level. High-resolution 
mapping, through genome-wide association 
studies or through recombinant inbred lines, 
combined with next-generation sequenc-
ing can identify the molecular changes that 
cause a particular effect. Such studies can 
easily be performed in any species, as long as 
enough natural isolates have been or can be 
obtained. A few inroads into the microevo-
lution of development have been taken; for 
example, studies in P. pacificus and C. elegans 
indicate that vulva development is subject to 
microevolutionary change41,42. In C. elegans, 
several recent studies show the power of 
QTL analysis for other developmental and 
life history traits, such as copulatory plug 
formation and pathogen susceptibility43,44. 
Therefore, ‘next-generation genetics’, as 
recently proposed for plants45, can be a pow-
erful new tool when applied to evo–devo. 
ultimately, such studies might indicate how 
natural variation contributes to macroevolu-
tionary alterations. Neo-Darwinism assumes 
that macroevolutionary change results from 
repeated microevolutionary alterations, but 
there is no substantial proof for this assump-
tion. Current population genetics lacks an 
in-depth consideration of developmental 
control genes in the same way as evo–devo 
lacks a serious consideration of microevo-
lutionary processes. Therefore, a synthe-
sis of evo–devo and population genetics 
would provide a substantial contribution to 
evolutionary theory.

A synthesis with evolutionary ecology. All 
processes required for phenotypic change — 
natural variation, selection, genetic drift and 
developmental change — occur in popula-
tions that live in a specific ecological con-
text. As the environmental conditions that 
organisms are exposed to change, it is crucial 
to ask whether the environment influences 
development. But are the developmental 
response to the environment and the ecolog-
ical interactions of the organism important 
for the evolution of new phenotypes? How 
do developmental processes evolve under 
changing environmental conditions?

Research programmes in ‘ecological 
developmental biology’ are now actively 
propagated40,46. For some evo–devo mod-
els the ecological niche is well described. 
For example, P. pacificus lives on a scarab 
beetle47,48 and T. castaneum in dry environ-
ments, such as wheat49. Both species are 
now the subject of ‘ecological evo–devo’ 
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research50–52. Other evo–devo models, 
such as the cnidarian Nematostella vect-
ensis and some of its close relatives, differ 
from each other in their ecological niche 
and tolerance, and research programmes 
that involve ecology-oriented studies are 
well underway53. Other models have been 
established largely owing to ecological 
considerations. For example, studies in the 
cavefish Astyanax mexicanus can indicate 
how the developmental networks regulat-
ing eye development have been altered in 
response to the dark environment in caves54. 
Phenotypic plasticity is a central concept 
of evo–devo and is, by definition, at the 
interface between evo–devo and ecology55,56. 
However, although it is a widespread phe-
nomenon57–59, further studies are required 
to reveal whether phenotypic plasticity is a 
common route for the generation of devel-
opmental novelty. One advocate of this idea 
was van Valen, who was ahead of his time 
when he proposed that “evolution is the 
control of development by ecology”60 — a 
statement that is now being transferred to  
a highly interdisciplinary research agenda.

Conclusions
I argue that the attempt of evo–devo to 
understand phenotypic change and novelty 
requires functional investigations. This is 
best achieved by choosing a limited number 
of model organisms and by developing a 
sophisticated methodological tool kit in 
those organisms. Although such a research 
strategy is constrained by unbiased phy-
logenetic sampling, it can help evo–devo 
to develop its own theory and to secure 
funding as part of the modern life sciences. 
Insight into the change of developmental 
mechanisms provides a platform for the 
integration of evo–devo into evolutionary 
theory — the single most important require-
ment for the long-term success of this young 
discipline. The partial ignorance of evo–
devo with respect to the complexity of  
evolutionary theory61, and the naive assump-
tion that all developmental patterns observed 
in nature are adaptive62, is an important 
threat to evo–devo. A synthesis with popula-
tion genetics and evolutionary ecology can 
help evo–devo meet these challenges, but 
requires new research strategies and intense 
consideration of evolutionary theory.
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	Figure 3 | Frequency of new mutant phenotypes detected in mutant mouse lines analysed in the German Mouse Clinic (GMC). New phenotypes have been identified in 96% of all mutant mouse lines that have been analysed in the GMC primary screen. Approximately two-thirds of the mutant mouse lines submitted to the GMC had known mutant phenotypes before the GMC primary screen. One-third of mutant mouse lines were submitted without any known mutant phenotype.
	Figure 4 | Schematic representation of the five environmental platforms currently being established at the German Mouse Clinic. The five platforms in the blue boxes represent the major interfaces of the organism with the environment (gut, lung and skin, brain and sense organs, muscle and bone, and immune system), orange boxes give examples of environmental factors in each platform. Different test paradigms are currently being evaluated for their applicability and relevance for the mouse model system.
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	nrg2575
	Abstract | Genome-wide panels of SNPs have recently been used in domestic animal species to map and identify genes for many traits and to select genetically desirable livestock. This has led to the discovery of the causal genes and mutations for several single-gene traits but not for complex traits. However, the genetic merit of animals can still be estimated by genomic selection, which uses genome-wide SNP panels as markers and statistical methods that capture the effects of large numbers of SNPs simultaneously. This approach is expected to double the rate of genetic improvement per year in many livestock systems.
	The history of QTL mapping
	GWA studies
	Figure 1 | Key events in the history of cattle. a | Approximately 1 million years ago, the Bos genus diverged from other Bovidae. Between 1,000,000 and 500,000 years ago, the Bos taurus species and Bos indicus species diverged. Approximately 10,000 years ago, both species were domesticated. 400 to 100 years ago, deliberate breed formation began. Recently, the widespread use of artificial insemination has further reduced effective population size in some breeds. b | The graph depicts effective population size along the population history, estimated from the average linkage disequilibrium at different marker distances, for Dutch black and white Holstein–Friesian bulls (HF_NLD), Dutch red and white Holstein–Friesian bulls (RW_NLD), Australian Holstein–Friesian bulls (HF_AUS), Australian Angus cattle (ANG_AUS), New Zealand Friesian cows (HF_NZL) and New Zealand Jersey cows (JER_NZL)13. Effective population size was large before domestication (>50,000) and declined to 1,000–2,000 after domestication, and then declined again to ~100 owing to breed formation and modern breeding programmes. Aurochs image in part a is courtesy of Roberto Fortuna, National Museum of Denmark. Part b is modified, with permission, from ref. 13  Genetics Society of America (2008).
	Figure 2 | Linkage disequilibrium (LD) in cattle breeds. a | Decline of LD with distance between pairs of SNPs as measured by LD within breeds of cattle (derived from approximately 35,000 SNPs, and a human population with northern and western European ancestry (CEPH cohort))12. b | LD between breeds of cattle. The heat map shows the correlation between LD in different breeds for SNPs within 10 kb of each other. For two closely related breeds (Angus and Red Angus) the correlation is high, as shown in a hypothetical example in which a–q and A–Q chromosomes are common in both breeds (upper box). However, when Angus is compared with Brahman (a distantly related breed) the correlation is low and, in the hypothetical example, Brahman chromosomes often carry a–Q, which is a rare haplotype in Angus (lower box). In fact, the correlation is low for any combination of a Bos indicus breed and a Bos taurus breed65. ANG, Angus; BMA, Beefmaster; BRM, Brahman; BSW, Brown Swiss; CHL, Charolais; GIR, Gir; GNS, Guernsey; HFD, Hereford; HOL, Holstein; JER, Jersey; LIM, Limousin; NDA, N’Dama; NEL, Nelore; NRC, Norwegian Red; PMT, Piedmontese; RGM, Romagnola; RGU, Red Angus; SGT, Santa Getrudis; SHK, Sheko.  Data for part a is taken from Refs 12,65.  Data for part b are courtesy of the Bovine HapMap Consortium. Part a and the heat map in part b are modified, with permission, from REF. 65  (2009) American Association for the Advancement of Science.
	Results of GWA studies
	Table 1 | Genes harbouring mutations affecting monogenic traits in dogs and cattle discovered by genome-wide association 
	Marker-associated selection
	Box 1 | Genetic architecture of complex traits
	Box 2 | Genomic selection
	Genomic selection
	Figure 3 | Calculation of number of animals in a reference population and accuracy of breeding values. a | Number of animals needed in a reference population. To achieve an accuracy of 0.7 for estimated genomic breeding values (GEBVs) calculated from SNPs requires an increasing number of animals in the reference population as the heritability declines or the Ne of the population increases. b | Accuracy of GEBVs of un-phenotyped individuals with increasing number of phenotype records in the reference population used to estimated SNP effects, for different heritabilities (h2). Ne was 100.
	The future

	nrg2579
	Abstract | Following the identification of several disease-associated polymorphisms by genome-wide association (GWA) analysis, interest is now focusing on the detection of effects that, owing to their interaction with other genetic or environmental factors, might not be identified by using standard single-locus tests. In addition to increasing the power to detect associations, it is hoped that detecting interactions between loci will allow us to elucidate the biological and biochemical pathways that underpin disease. Here I provide a critical survey of the methods and related software packages currently used to detect the interactions between genetic loci that contribute to human genetic disease. I also discuss the difficulties in determining the biological relevance of statistical interactions.
	Definition of statistical interaction
	Box 1 | Statistical models of interaction
	Testing for interaction between known factors
	Tests for association allowing for interaction
	Exhaustive search
	Data-mining methods and related approaches
	Figure 1 | Semi-exhaustive search of pairwise interactions between 89,294 SNPs. I used the ‘--fast-epistasis’ and ‘--case-only’ options in PLINK to analyse the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease and control samples. I used the same quality control procedures as the WTCCC to remove poor quality SNPs and samples before analysis. I additionally discarded 561 SNPs that had been analysed by WTCCC but were subsequently discarded on the basis of visual inspection of the SNP intensity cluster plots (J. Barrett, personal communication). To reduce the number of interaction tests to be performed, I selected a set of 89,294 SNPs that passed a single-locus p value threshold of 0.2. Analysis of the 89,294 SNPs on a single node of a computer cluster took 14 days. Unfortunately, neither SNP in the interaction detected by Emily et al.60 were included in my analysis, as neither had a single-locus p  ≤ 0.2. A | Results from ‘--case-only’ analysis, in which SNP pairs were discarded if they were <1 Mb apart (panel a), <5 Mb apart (panel b), and <50 Mb apart (panel c). The default in PLINK is to exclude tests of pairs of SNPs that are less than 1 Mb apart. Even when extreme separations of 5 Mb or 50 Mb are enforced (panels b and c), we find a large number of apparently significant results. A closer inspection showed that in many cases, these significant results are due to correlation within the sample of cases between alleles at loci on different chromosomes. Given the general departure from the expected distribution, it seems likely that these significant case-only results are artefacts rather than genuine interaction effects. Panel d shows a Q–Q plot of all results from the ‘--fast-epistasis’ option with p < –0.0001. These results lie much closer to the expected line; only one result seems to show strong departure from the expected significance. The top-ranking results (those with χ2 > 35, as indicated by the dashed line on panel d are shown in Supplementary information S3 (table). Interestingly, most of the SNPs involved in the putative interactions show little single-locus significance, apart from rs4471699 on chromosome 16. This SNP was not reported as significantly associated by WTCCC1. B | Single-locus association results across chromosome 16. rs4471699 at position 30,227,808 shows the highest significance but is far removed from most of the significant results, which are situated close to nucleotide-binding oligomerization domain containing 2 (NOD2) (approximate position 49,297,083). Further investigation showed that this SNP had been excluded from the WTCCC analysis owing to poor genotype clustering (J. Barrett, personal communication), even though it passed the stated WTCCC exclusion criteria and was not present in the original list of additional exclusions I was given. It therefore seems likely that both the single-locus and interaction results at rs4471699 are false positives.
	Box 2 | Recursive partitioning approach
	Bayesian model selection approaches
	Figure 2 | Random Jungle analysis of 89,294 SNPs. I used the software package Random Jungle78 to perform a random forests analysis of the 89,294 SNPs that passed a single-locus p value threshold of 0.2 in the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease and control data. As Random Jungle, in common with many other machine-learning approaches, prefers not to have missing genotype data, the missing genotypes were imputed as the single most likely values on the basis of the genotype frequencies in the case–control data set. Analysis of the 89,294 SNP set took approximately 5 hours, using 6,000 trees in the forest and √n = √89,294 randomly chosen variables at each node. a | Importance values from the Random Jungle analysis. These are clearly dominated by the result at rs4471699 on chromosome 16, which is likely to be a false positive. b | Results from Random Jungle analysis with SNP rs4471699 removed. Once this SNP is removed, the remaining SNPs are better distinguished, but it is unclear whether this analysis offers any greater insight than the single-locus analysis. c | Results from single-locus association analysis of all 6,113 SNPs using the trend test implemented in PLINK. In many cases, the highest ranking SNPs are in similar locations to (b), but with clearer significance in (c).
	Box 3 | Multifactor Dimensionality Reduction
	Biological interpretation
	Figure 3 | Multifactor Dimensionality Reduction (MDR) and Tuned ReliefF (TuRF) analysis of 6,113 SNPs. I used the Java implementation of MDR to analyse 6,113 SNPs that passed a single-locus p value threshold of 0.01 in the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease and control data, with missing genotypes imputed as the single most likely values on the basis of the genotype frequencies in the case–control data set. Examination of all pairwise combinations in the entire 6,113 SNP set was computationally prohibitive but analysis using a prior filtering step with ReliefF or TuRF, which reduced the data set for MDR analysis to 1,000 SNPs, was achievable. The best single-locus model identified was rs4471699, providing a testing accuracy of 0.5852 and cross-validation consistency of 10 out of 10. The best two-locus model identified was rs4471699 and rs2076756, providing a testing accuracy of 0.5879 and cross-validation consistency of 4 out of 10. MDR, in common with the other methods investigated, has clearly been dominated by the false positive result at rs4471699. Interestingly, however, this SNP is not selected by TuRF when filtering down the set of SNPs for MDR analysis to include only 100 SNPs. Using the 100 SNP set, the best single-locus model identified was rs931058, providing a testing accuracy of 0.5114 and cross-validation consistency of 5 out of 10. The best two-locus model identified was rs931058 and rs10824773, providing a testing accuracy of 0.5205 but cross-validation consistency of only 2 out of 10. Using the 100 SNP set, it was computationally feasible to fit three‑locus and four‑locus models; however, the resulting best models had cross-validation consistencies as low as for the two-locus model. I also found extreme sensitivity in both TuRF and MDR to the choice of the random number seed (data not shown), suggesting that, overall, these results should be interpreted with caution. A problem with MDR is that it outputs only the best model rather than a measure of significance for all of the models or variables considered. An idea of the importance of the variables can be determined by examining the ‘fitness landscape’ output from the program, shown here. a | Fitness landscape scores from TuRF analysis of all 6,113 SNPs. b | Fitness landscape scores from MDR analysis using the top 1,000 out of 6,113 SNPs filtered using TuRF. c | Results from single-locus association analysis of all 6,113 SNPs using the trend test implemented in PLINK. It is unclear whether the fitness landscape results from TuRF (a) or MDR (b) offer any great advantage over standard single-locus analysis (c) with respect to determining the importance of variables.
	Conclusions
	Figure 4 | Bayesian Epistasis Association Mapping (BEAM) analysis of 47,727 SNPs. I used BEAM to analyse a set of 47,724 SNPs that passed a single-locus p value threshold of 0.1 in the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease and control samples. Analysis of the 47,724 SNPs took 8 days (with some modification to the default settings, most notably imposing a maximum of 5 × 10–7 Markov chain Monte Carlo (MCMC) iterations13 rather than using the default value of n2, in which n is the number of loci). I estimated that analysis of the 89,294 SNP set passing a single-locus p value threshold of 0.2 with a similar number of MCMC iterations would have taken more than 5 weeks. a | ‘B-statistic’ p values for the 1,321 single-locus associations detected by BEAM. b | Results from single-locus association analysis of all 47,727 SNPs using the trend test implemented in PLINK. BEAM detects the same loci as are detected by single-locus analysis. BEAM additionally detects (with a quoted p value of 0.000000) four two-locus interactions, each involving an interaction of rs2532292 on chromosome 17 with a nearby SNP (either rs12150547, rs17689882, rs17650381 or rs17574824) within the same cluster. None of these SNPs shows particularly strong single-locus associations and so this putative interaction is intriguing. However, none of these pairs of SNPs showed significant (defined as a p < 0.0001) interaction in the PLINK ‘--fast-epistasis’ analysis. Closer inspection of these SNPs in the control sample indicated that they are in strong linkage disequilibrium (D′ > 0.99) with one another, suggesting that the detected interactions might correspond to marker dependencies owing to linkage disequilibrium, rather than to genuine interaction effects.
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	Descent with modification
	Abstract | Human languages form a distinct and largely independent class of cultural replicators with behaviour and fidelity that can rival that of genes. Parallels between biological and linguistic evolution mean that statistical methods inspired by phylogenetics and comparative biology are being increasingly applied to study language. Phylogenetic trees constructed from linguistic elements chart the history of human cultures, and comparative studies reveal surprising and general features of how languages evolve, including patterns in the rates of evolution of language elements and social factors that influence temporal trends of language evolution. For many comparative questions of anthropology and human behavioural ecology, historical processes estimated from linguistic phylogenies may be more relevant than those estimated from genes.
	Table 1 | Some analogies between biological and linguistic evolution
	Data and statistical modelling
	Box 1 | A linguistic alignment and a statistical model of evolution
	Language trees and gene trees
	Figure 1 | Tree of Indo-European languages. Consensus tree of 87 Indo-European languages derived from the Swadesh list of 200 words5,23,26. Inner coloured ring identifies major clades as shown in the legend. The tree is rooted using ancient Hittite and Tocharian languages23,26. Branch lengths measure the expected number of lexical replacements (word changes) between two points on the tree. Numbers along branches are the Bayesian posterior probabilities of selected deep nodes of the tree, showing that words can resolve old relationships. Many of those nodes not labelled have high posterior support, although some are low and suffer from conflicting signals26. The outer colours identify a language’s sentence word order in terms of subject (S) verb (V) and object (O) (red bars), and whether it employs pre or postpositional modification of sentence objects (blue bars) (see text, data from ref. 69). Red, SVO or VSO; light red, SOV; blue, prepositional; light blue, postpositional. Celtic languages are VSO; Greek, German, Dutch, Byelorussian and others are sometimes classified as no dominant word order (NDO) (here coded red). Blue–red pairs and light blue–light red pairs conform to Greenberg’s58 prediction (see text and FIG. 5)
	Figure 2 | Rates of lexical replacement. a | Histogram of mean rates of lexical replacement in Indo-European languages for the 200 words in the Swadesh list, measured in units of numbers of new cognates per 1,000 years of evolution. Fastest to slowest rate represents over 100-fold difference. Values were found as the mean of the posterior distribution of the elements of Q matrices (see text) integrated over a Bayesian posterior distribution of trees26. Mean = 0.3 ± 0.18 new cognates per 1,000 years, median = 0.27, range = 0.009 to 0.93. b | Histogram of the word half-life estimates as derived from the rates of lexical replacement, measuring the expected amount of time before a word has a 50% chance of being replaced by a new non-cognate word. A half-life of >70,000 years is indicative of a transition rate that is compatible with observing a single cognate class (that is, no changes) over the entire ~130,000 ‘language years’ of the Indo-European tree26 (calculated as the total obtained by adding the number of years of evolution represented by the sum of the branches of the tree in FIG. 1). Existence of at least five such classes in Indo-European lexicon lends support to this estimate. Mean = 5,300 years, median = 2,500, range = 750 to 76,000.
	Rates of evolution and time depth
	Figure 3 | Rates of lexical replacement are stable among language families. Statistically estimated rates of lexical replacement for 110 words from the Swadesh list in the Indo-European (I-E) languages (data from ref. 26 and Fig. 2a) correlated with rank ordering of subjectively assessed rates of change for the same words in a worldwide sample of 14 languages families, correlation (r) = 0.65. The 14 language families assessed were Sino-Tibetan, Austroasiatic, Altaic, Austronesian, Australian, Khoisan, North Caucasian, Dravidian, Indo-European, Kartvelian, Afroasiatic, Tai, Uralic and Yenisean. The rank order list was taken from ref. 46.
	Figure 4 | Relationships between language and species distribution. North American human language–cultural groups (before European contact) and mammal species are distributed similarly across degrees of latitude. a | Numbers of languages and numbers of mammal species at each degree of north latitude in North America. The trends reflect the shape of the continent, being narrow in the south regions and growing wider at higher latitudes. Both trends peak at approximately 40°N, where North America is ~3,000 miles wide. b | Densities of languages and mammal species, calculated as the number of each found at the specific latitude divided by the area of the continent for a 1° latitudinal slice at each latitude. Figure and data is reproduced, with permission, from Nature REF. 3  (2004) Macmillan Publishers Ltd. All rights reserved.
	Social effects and bursts of linguistic change
	Language structure
	Figure 5 | Evolution of word order changes. a | Suggested evolution of word order changes in Indo-European (I‑E) languages. Only well-supported transitions are shown. SOV, SVO and VSO refer to orderings of subject (S), verb (V) and object (O) in sentences (see FIG. 1), NDO is for languages categorized as having no dominant word order. The brackets indicate that the NDO category is questioned by some linguists, and the evolutionary relationship excluding it is represented by the light blue boxes. Statistical modelling9,67 reconstructs ancestral Indo-European word order as SOV. SVO later evolves from SOV (dashed arrow indicates transitions back to SOV that occur in Indo-Iranian languages), and SVO gives rise to VSO. SVO and (possibly SOV) may switch to NDO in case-marked languages such as German, Latin or Greek. This broad result is predicted in ref. 62, although NDO transitions need further study. There are many possible transitions between SVO and NDO within the Indo-European tree. Uncertainty about the true Indo-European phylogeny and the models of evolution is taken into account by integrating the estimates of the model’s parameters over a Bayesian sample of Indo-European trees. b | A diagram showing correlated evolution of word order — SOV versus VSO or SVO (VSO/SVO) including NDO — and pre versus postpositional phrasing (‘pre’ and ‘post’) to modify sentence objects (log Bayes factor test of association ~12, which indicates very strong support)9,67. This model reconstructs the ancestral state as SOV, post. Solid arrows indicate statistically supported evolutionary transitions, dashed arrows are not supported. Thickness conveys relative strength of the effect. Here, these arrows indicate that the derived state of VSO/SVO and prepositional phrasing evolves from the ancestral state either by adopting a different word order first, becoming SOV, pre, or by adopting a different positional phrasing first, becoming VSO/SVO, post. Examples of each evolutionary process occur in Indo-European languages (FIG. 1). These intermediate states violate Greenberg’s58 predictions but are short lived, as indicated by the thick arrows pointing to the ancestral and derived states. The derived state seems to be stable in Indo-European languages. Data is taken from the World Atlas of Linguistic Structures71. The evolutionary relationships shown here might change owing to a lack of consensus on the classification of some languages on these two traits (see also FIG. 1).
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	Abstract | There has been a recent trend in evolutionary developmental biology (evo–devo) towards using increasing numbers of model species. I argue that, to understand phenotypic change and novelty, researchers who investigate evo–devo in animals should choose a limited number of model organisms in which to develop a sophisticated methodological tool kit for functional investigations. Furthermore, a synthesis of evo–devo with population genetics and evolutionary ecology is needed to meet future challenges.
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